

    
      
          
            
  
Welcome to OpenCompass’ documentation!


Getting started with OpenCompass

To help you quickly familiarized with OpenCompass, we recommend you to walk through the following documents in order:


	First read the GetStarted section set up the environment, and run a mini experiment.


	Then learn its basic usage through the UserGuides.


	If you want to tune the prompts, refer to the Prompt.


	If you want to customize some modules, like adding a new dataset or model, we have provided the AdvancedGuides.


	There are more handy tools, such as prompt viewer and lark bot reporter, all presented in Tools.




We always welcome PRs and Issues for the betterment of OpenCompass.
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Installation


	Set up the OpenCompass environment:





Open-source Models with GPUAPI Models with CPU-only
conda create --name opencompass python=3.10 pytorch torchvision pytorch-cuda -c nvidia -c pytorch -y
conda activate opencompass





If you want to customize the PyTorch version or related CUDA version, please refer to the official documentation [https://pytorch.org/get-started/locally/] to set up the PyTorch environment. Note that OpenCompass requires pytorch>=1.13.


conda create -n opencompass python=3.10 pytorch torchvision torchaudio cpuonly -c pytorch -y
conda activate opencompass
# also please install requiresments packages via `pip install -r requirements/api.txt` for API models if needed.





If you want to customize the PyTorch version, please refer to the official documentation [https://pytorch.org/get-started/locally/] to set up the PyTorch environment. Note that OpenCompass requires pytorch>=1.13.





	Install OpenCompass:

git clone https://github.com/open-compass/opencompass.git
cd opencompass
pip install -e .







	Install humaneval (Optional)

If you want to evaluate your models coding ability on the humaneval dataset, follow this step.


click to show the details
git clone https://github.com/openai/human-eval.git
cd human-eval
pip install -r requirements.txt
pip install -e .
cd ..





Please read the comments in human_eval/execution.py lines 48-57 to understand the potential risks of executing the model generation code. If you accept these risks, uncomment line 58 to enable code execution evaluation.




	Install Llama (Optional)

If you want to evaluate Llama / Llama-2 / Llama-2-chat with its official implementation, follow this step.


click to show the details
git clone https://github.com/facebookresearch/llama.git
cd llama
pip install -r requirements.txt
pip install -e .
cd ..





You can find example configs in configs/models. (example [https://github.com/open-compass/opencompass/blob/eb4822a94d624a4e16db03adeb7a59bbd10c2012/configs/models/llama2_7b_chat.py])




	Install alpaca-eval (Optional)：

If you want toevaluate alpaca-eval in official ways, follow this step.


click to show the details
pip install alpaca-eval












Dataset Preparation

The datasets supported by OpenCompass mainly include two parts:


	Huggingface datasets: The Huggingface Datasets [https://huggingface.co/datasets] provide a large number of datasets, which will automatically download when running with this option.


	Custom dataset: OpenCompass also provides some Chinese custom self-built datasets. Please run the following command to manually download and extract them.




Run the following commands to download and place the datasets in the ${OpenCompass}/data directory can complete dataset preparation.

# Run in the OpenCompass directory
wget https://github.com/open-compass/opencompass/releases/download/0.2.2.rc1/OpenCompassData-core-20240207.zip
unzip OpenCompassData-core-20240207.zip





If you need to use the more comprehensive dataset (~500M) provided by OpenCompass, You can download and unzip it using the following command:

wget https://github.com/open-compass/opencompass/releases/download/0.2.2.rc1/OpenCompassData-complete-20240207.zip
unzip OpenCompassData-complete-20240207.zip
cd ./data
find . -name "*.zip" -exec unzip "{}" \;





The list of datasets included in both .zip can be found here [https://github.com/open-compass/opencompass/releases/tag/0.2.2.rc1]

OpenCompass has supported most of the datasets commonly used for performance comparison, please refer to configs/dataset for the specific list of supported datasets.

For next step, please read Quick Start.




            

          

      

      

    

  

    
      
          
            
  
Quick Start

[image: image]


Overview

OpenCompass provides a streamlined workflow for evaluating a model, which consists of the following stages: Configure -> Inference -> Evaluation -> Visualization.

Configure: This is your starting point. Here, you’ll set up the entire evaluation process, choosing the model(s) and dataset(s) to assess. You also have the option to select an evaluation strategy, the computation backend, and define how you’d like the results displayed.

Inference & Evaluation: OpenCompass efficiently manages the heavy lifting, conducting parallel inference and evaluation on your chosen model(s) and dataset(s). The Inference phase is all about producing outputs from your datasets, whereas the Evaluation phase measures how well these outputs align with the gold standard answers. While this procedure is broken down into multiple “tasks” that run concurrently for greater efficiency, be aware that working with limited computational resources might introduce some unexpected overheads, and resulting in generally slower evaluation. To understand this issue and know how to solve it, check out FAQ: Efficiency.

Visualization: Once the evaluation is done, OpenCompass collates the results into an easy-to-read table and saves them as both CSV and TXT files. If you need real-time updates, you can activate lark reporting and get immediate status reports in your Lark clients.

Coming up, we’ll walk you through the basics of OpenCompass, showcasing evaluations of pretrained models OPT-125M [https://huggingface.co/facebook/opt-125m] and OPT-350M [https://huggingface.co/facebook/opt-350m] on the SIQA [https://huggingface.co/datasets/social_i_qa] and Winograd [https://huggingface.co/datasets/winograd_wsc] benchmark tasks. Their configuration files can be found at configs/eval_demo.py [https://github.com/open-compass/opencompass/blob/main/configs/eval_demo.py].

Before running this experiment, please make sure you have installed OpenCompass locally and it should run successfully under one GTX-1660-6G GPU.
For larger parameterized models like Llama-7B, refer to other examples provided in the configs directory [https://github.com/open-compass/opencompass/tree/main/configs].



Configuring an Evaluation Task

In OpenCompass, each evaluation task consists of the model to be evaluated and the dataset. The entry point for evaluation is run.py. Users can select the model and dataset to be tested either via command line or configuration files.


Command LineCommand Line (Custom HF Model)Configuration File
Users can combine the models and datasets they want to test using --models and --datasets.

python run.py --models hf_opt_125m hf_opt_350m --datasets siqa_gen winograd_ppl





The models and datasets are pre-stored in the form of configuration files in configs/models and configs/datasets. Users can view or filter the currently available model and dataset configurations using tools/list_configs.py.

# List all configurations
python tools/list_configs.py
# List all configurations related to llama and mmlu
python tools/list_configs.py llama mmlu







More about list_configs






Running python tools/list_configs.py llama mmlu gives the output like:

+-----------------+-----------------------------------+
| Model           | Config Path                       |
|-----------------+-----------------------------------|
| hf_llama2_13b   | configs/models/hf_llama2_13b.py   |
| hf_llama2_70b   | configs/models/hf_llama2_70b.py   |
| ...             | ...                               |
+-----------------+-----------------------------------+
+-------------------+---------------------------------------------------+
| Dataset           | Config Path                                       |
|-------------------+---------------------------------------------------|
| cmmlu_gen         | configs/datasets/cmmlu/cmmlu_gen.py               |
| cmmlu_gen_ffe7c0  | configs/datasets/cmmlu/cmmlu_gen_ffe7c0.py        |
| ...               | ...                                               |
+-------------------+---------------------------------------------------+





Users can use the names in the first column as input parameters for --models and --datasets in python run.py. For datasets, the same name with different suffixes generally indicates that its prompts or evaluation methods are different.





Model not on the list?






If you want to evaluate other models, please check out the “Command Line (Custom HF Model)” tab for the way to construct a custom HF model without a configuration file, or “Configuration File” tab to learn the general way to prepare your model configurations.




For HuggingFace models, users can set model parameters directly through the command line without additional configuration files. For instance, for the facebook/opt-125m model, you can evaluate it with the following command:

python run.py --datasets siqa_gen winograd_ppl \
--hf-type base \
--hf-path facebook/opt-125m





Note that in this way, OpenCompass only evaluates one model at a time, while other ways can evaluate multiple models at once.


Caution

--num-gpus does not stand for the actual number of GPUs to use in evaluation, but the minimum required number of GPUs for this model. More





More detailed example






python run.py --datasets siqa_gen winograd_ppl \
--hf-type base \  # HuggingFace model type, base or chat
--hf-path facebook/opt-125m \  # HuggingFace model path
--tokenizer-path facebook/opt-125m \  # HuggingFace tokenizer path (if the same as the model path, can be omitted)
--tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True \  # Arguments to construct the tokenizer
--model-kwargs device_map='auto' \  # Arguments to construct the model
--max-seq-len 2048 \  # Maximum sequence length the model can accept
--max-out-len 100 \  # Maximum number of tokens to generate
--min-out-len 100 \  # Minimum number of tokens to generate
--batch-size 64  \  # Batch size
--num-gpus 1  # Number of GPUs required to run the model






See also

For all HuggingFace related parameters supported by run.py, please read Launching Evaluation Task.






In addition to configuring the experiment through the command line, OpenCompass also allows users to write the full configuration of the experiment in a configuration file and run it directly through run.py. The configuration file is organized in Python format and must include the datasets and models fields.

The test configuration for this time is configs/eval_demo.py [https://github.com/open-compass/opencompass/blob/main/configs/eval_demo.py]. This configuration introduces the required dataset and model configurations through the inheritance mechanism and combines the datasets and models fields in the required format.

from mmengine.config import read_base

with read_base():
    from .datasets.siqa.siqa_gen import siqa_datasets
    from .datasets.winograd.winograd_ppl import winograd_datasets
    from .models.opt.hf_opt_125m import opt125m
    from .models.opt.hf_opt_350m import opt350m

datasets = [*siqa_datasets, *winograd_datasets]
models = [opt125m, opt350m]





When running tasks, we just need to pass the path of the configuration file to run.py:

python run.py configs/eval_demo.py







More about models






OpenCompass provides a series of pre-defined model configurations under configs/models. Below is the configuration snippet related to opt-350m [https://github.com/open-compass/opencompass/blob/main/configs/models/opt/hf_opt_350m.py] (configs/models/opt/hf_opt_350m.py):

# Evaluate models supported by HuggingFace's `AutoModelForCausalLM` using `HuggingFaceBaseModel`
from opencompass.models import HuggingFaceBaseModel

models = [
    # OPT-350M
    dict(
        type=HuggingFaceBaseModel,
        # Initialization parameters for `HuggingFaceBaseModel`
        path='facebook/opt-350m',
        # Below are common parameters for all models, not specific to HuggingFaceBaseModel
        abbr='opt-350m-hf',         # Model abbreviation
        max_out_len=1024,           # Maximum number of generated tokens
        batch_size=32,              # Batch size
        run_cfg=dict(num_gpus=1),   # The required GPU numbers for this model
    )
]





When using configurations, we can specify the relevant files through the command-line argument  --models or import the model configurations into the  models list in the configuration file using the inheritance mechanism.


See also

More information about model configuration can be found in Prepare Models.







More about datasets






Similar to models, dataset configuration files are provided under configs/datasets. Users can use --datasets in the command line or import related configurations in the configuration file via inheritance

Below is a dataset-related configuration snippet from configs/eval_demo.py:

from mmengine.config import read_base  # Use mmengine.read_base() to read the base configuration

with read_base():
    # Directly read the required dataset configurations from the preset dataset configurations
    from .datasets.winograd.winograd_ppl import winograd_datasets  # Read Winograd configuration, evaluated based on PPL (perplexity)
    from .datasets.siqa.siqa_gen import siqa_datasets  # Read SIQA configuration, evaluated based on generation

datasets = [*siqa_datasets, *winograd_datasets]       # The final config needs to contain the required evaluation dataset list 'datasets'





Dataset configurations are typically of two types: ‘ppl’ and ‘gen’, indicating the evaluation method used. Where ppl means discriminative evaluation and gen means generative evaluation.

Moreover, configs/datasets/collections [https://github.com/open-compass/opencompass/blob/main/configs/datasets/collections] houses various dataset collections, making it convenient for comprehensive evaluations. OpenCompass often uses base_medium.py for full-scale model testing. To replicate results, simply import that file, for example:

python run.py --models hf_llama_7b --datasets base_medium






See also

You can find more information from Dataset Preparation.









Warning

OpenCompass usually assumes network is available. If you encounter network issues or wish to run OpenCompass in an offline environment, please refer to FAQ - Network - Q1 for solutions.



The following sections will use configuration-based method as an example to explain the other features.



Launching Evaluation

Since OpenCompass launches evaluation processes in parallel by default, we can start the evaluation in --debug mode for the first run and check if there is any problem. In --debug mode, the tasks will be executed sequentially and output will be printed in real time.

python run.py configs/eval_demo.py -w outputs/demo --debug





The pretrained models ‘facebook/opt-350m’ and ‘facebook/opt-125m’ will be automatically downloaded from HuggingFace during the first run.
If everything is fine, you should see “Starting inference process” on screen:

[2023-07-12 18:23:55,076] [opencompass.openicl.icl_inferencer.icl_gen_inferencer] [INFO] Starting inference process...





Then you can press ctrl+c to interrupt the program, and run the following command in normal mode:

python run.py configs/eval_demo.py -w outputs/demo





In normal mode, the evaluation tasks will be executed parallelly in the background, and their output will be redirected to the output directory outputs/demo/{TIMESTAMP}. The progress bar on the frontend only indicates the number of completed tasks, regardless of their success or failure. Any backend task failures will only trigger a warning message in the terminal.



More parameters in run.py






Here are some parameters related to evaluation that can help you configure more efficient inference tasks based on your environment:


	-w outputs/demo: Work directory to save evaluation logs and results. In this case, the experiment result will be saved to outputs/demo/{TIMESTAMP}.


	-r: Reuse existing inference results, and skip the finished tasks. If followed by a timestamp, the result under that timestamp in the workspace path will be reused; otherwise, the latest result in the specified workspace path will be reused.


	--mode all: Specify a specific stage of the task.


	all: (Default) Perform a complete evaluation, including inference and evaluation.


	infer: Perform inference on each dataset.


	eval: Perform evaluation based on the inference results.


	viz: Display evaluation results only.






	--max-partition-size 2000: Dataset partition size. Some datasets may be large, and using this parameter can split them into multiple sub-tasks to efficiently utilize resources. However, if the partition is too fine, the overall speed may be slower due to longer model loading times.


	--max-num-workers 32: Maximum number of parallel tasks. In distributed environments such as Slurm, this parameter specifies the maximum number of submitted tasks. In a local environment, it specifies the maximum number of tasks executed in parallel. Note that the actual number of parallel tasks depends on the available GPU resources and may not be equal to this number.




If you are not performing the evaluation on your local machine but using a Slurm cluster, you can specify the following parameters:


	--slurm: Submit tasks using Slurm on the cluster.


	--partition(-p) my_part: Slurm cluster partition.


	--retry 2: Number of retries for failed tasks.





See also

The entry also supports submitting tasks to Alibaba Deep Learning Center (DLC), and more customized evaluation strategies. Please refer to Launching an Evaluation Task for details.







Visualizing Evaluation Results

After the evaluation is complete, the evaluation results table will be printed as follows:

dataset    version    metric    mode      opt350m    opt125m
---------  ---------  --------  ------  ---------  ---------
siqa       e78df3     accuracy  gen         21.55      12.44
winograd   b6c7ed     accuracy  ppl         51.23      49.82





All run outputs will be directed to outputs/demo/ directory with following structure:

outputs/default/
├── 20200220_120000
├── 20230220_183030     # one experiment pre folder
│   ├── configs         # Dumped config files for record. Multiple configs may be kept if different experiments have been re-run on the same experiment folder
│   ├── logs            # log files for both inference and evaluation stages
│   │   ├── eval
│   │   └── infer
│   ├── predictions   # Prediction results for each task
│   ├── results       # Evaluation results for each task
│   └── summary       # Summarized evaluation results for a single experiment
├── ...





The summarization process can be further customized in configuration and output the averaged score of some benchmarks (MMLU, C-Eval, etc.).

More information about obtaining evaluation results can be found in Results Summary.



Additional Tutorials

To learn more about using OpenCompass, explore the following tutorials:


	Prepare Datasets


	Prepare Models


	Task Execution and Monitoring


	Understand Prompts


	Results Summary


	Learn about Config








            

          

      

      

    

  

    
      
          
            
  
FAQ


General


What are the differences and connections between ppl and gen?

ppl stands for perplexity, an index used to evaluate a model’s language modeling capabilities. In the context of OpenCompass, it generally refers to a method of answering multiple-choice questions: given a context, the model needs to choose the most appropriate option from multiple choices. In this case, we concatenate the n options with the context to form n sequences, then calculate the model’s perplexity for these n sequences. We consider the option corresponding to the sequence with the lowest perplexity as the model’s reasoning result for this question. This evaluation method is simple and direct in post-processing, with high certainty.

gen is an abbreviation for generate. In the context of OpenCompass, it refers to the model’s continuation writing result given a context as the reasoning result for a question. Generally, the string obtained from continuation writing requires a heavier post-processing process to extract reliable answers and complete the evaluation.

In terms of usage, multiple-choice questions and some multiple-choice-like questions of the base model use ppl, while the base model’s multiple-selection and non-multiple-choice questions use gen. All questions of the chat model use gen, as many commercial API models do not expose the ppl interface. However, there are exceptions, such as when we want the base model to output the problem-solving process (e.g., Let’s think step by step), we will also use gen, but the overall usage is as shown in the following table:



	

	ppl

	gen





	Base Model

	Only MCQ Tasks

	Tasks Other Than MCQ



	Chat Model

	None

	All Tasks






Similar to ppl, conditional log probability (clp) calculates the probability of the next token given a context. It is also only applicable to multiple-choice questions, and the range of probability calculation is limited to the tokens corresponding to the option numbers. The option corresponding to the token with the highest probability is considered the model’s reasoning result. Compared to ppl, clp calculation is more efficient, requiring only one inference, whereas ppl requires n inferences. However, the drawback is that clp is subject to the tokenizer. For example, the presence or absence of space symbols before and after an option can change the tokenizer’s encoding result, leading to unreliable test results. Therefore, clp is rarely used in OpenCompass.



How does OpenCompass control the number of shots in few-shot evaluations?

In the dataset configuration file, there is a retriever field indicating how to recall samples from the dataset as context examples. The most commonly used is FixKRetriever, which means using a fixed k samples, hence k-shot. There is also ZeroRetriever, which means not using any samples, which in most cases implies 0-shot.

On the other hand, in-context samples can also be directly specified in the dataset template. In this case, ZeroRetriever is also used, but the evaluation is not 0-shot and needs to be determined based on the specific template. Refer to prompt for more details



How does OpenCompass allocate GPUs?

OpenCompass processes evaluation requests using the unit termed as “task”. Each task is an independent combination of model(s) and dataset(s). The GPU resources needed for a task are determined entirely by the model being evaluated, specifically by the num_gpus parameter.

During evaluation, OpenCompass deploys multiple workers to execute tasks in parallel. These workers continuously try to secure GPU resources and run tasks until they succeed. As a result, OpenCompass always strives to leverage all available GPU resources to their maximum capacity.

For instance, if you’re using OpenCompass on a local machine equipped with 8 GPUs, and each task demands 4 GPUs, then by default, OpenCompass will employ all 8 GPUs to concurrently run 2 tasks. However, if you adjust the --max-num-workers setting to 1, then only one task will be processed at a time, utilizing just 4 GPUs.



Why doesn’t the GPU behavior of HuggingFace models align with my expectations?

This is a complex issue that needs to be explained from both the supply and demand sides:

The supply side refers to how many tasks are being run. A task is a combination of a model and a dataset, and it primarily depends on how many models and datasets need to be tested. Additionally, since OpenCompass splits a larger task into multiple smaller tasks, the number of data entries per sub-task (--max-partition-size) also affects the number of tasks. (The --max-partition-size is proportional to the actual number of data entries, but the relationship is not 1:1).

The demand side refers to how many workers are running. Since OpenCompass instantiates multiple models for inference simultaneously, we use --num-gpus to specify how many GPUs each instance uses. Note that --num-gpus is a parameter specific to HuggingFace models and setting this parameter for non-HuggingFace models will not have any effect. We also use --max-num-workers to indicate the maximum number of instances running at the same time. Lastly, due to issues like GPU memory and insufficient load, OpenCompass also supports running multiple instances on the same GPU, which is managed by the parameter --max-num-workers-per-gpu. Therefore, it can be generally assumed that we will use a total of --num-gpus * --max-num-workers / --max-num-workers-per-gpu GPUs.

In summary, when tasks run slowly or the GPU load is low, we first need to check if the supply is sufficient. If not, consider reducing --max-partition-size to split the tasks into finer parts. Next, we need to check if the demand is sufficient. If not, consider increasing --max-num-workers and --max-num-workers-per-gpu. Generally, we set --num-gpus to the minimum value that meets the demand and do not adjust it further.



How do I control the number of GPUs that OpenCompass occupies?

Currently, there isn’t a direct method to specify the number of GPUs OpenCompass can utilize. However, the following are some indirect strategies:

If evaluating locally:
You can limit OpenCompass’s GPU access by setting the CUDA_VISIBLE_DEVICES environment variable. For instance, using CUDA_VISIBLE_DEVICES=0,1,2,3 python run.py ... will only expose the first four GPUs to OpenCompass, ensuring it uses no more than these four GPUs simultaneously.

If using Slurm or DLC:
Although OpenCompass doesn’t have direct access to the resource pool, you can adjust the --max-num-workers parameter to restrict the number of evaluation tasks being submitted simultaneously. This will indirectly manage the number of GPUs that OpenCompass employs. For instance, if each task requires 4 GPUs, and you wish to allocate a total of 8 GPUs, then you should set --max-num-workers to 2.



libGL.so.1 not foune

opencv-python depends on some dynamic libraries that are not present in the environment. The simplest solution is to uninstall opencv-python and then install opencv-python-headless.

pip uninstall opencv-python
pip install opencv-python-headless





Alternatively, you can install the corresponding dependency libraries according to the error message

sudo apt-get update
sudo apt-get install -y libgl1 libglib2.0-0








Network


My tasks failed with error: ('Connection aborted.', ConnectionResetError(104, 'Connection reset by peer')) or urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='cdn-lfs.huggingface.co', port=443)

Because of HuggingFace’s implementation, OpenCompass requires network (especially the connection to HuggingFace) for the first time it loads some datasets and models. Additionally, it connects to HuggingFace each time it is launched. For a successful run, you may:


	Work behind a proxy by specifying the environment variables http_proxy and https_proxy;


	Use the cache files from other machines. You may first run the experiment on a machine that has access to the Internet, and then copy the cached files to the offline one. The cached files are located at ~/.cache/huggingface/ by default (doc [https://huggingface.co/docs/datasets/cache#cache-directory]). When the cached files are ready, you can start the evaluation in offline mode:

HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 HF_EVALUATE_OFFLINE=1 python run.py ...





With which no more network connection is needed for the evaluation. However, error will still be raised if the files any dataset or model is missing from the cache.



	Use mirror like hf-mirror [https://hf-mirror.com/]

HF_ENDPOINT=https://hf-mirror.com python run.py ...











My server cannot connect to the Internet, how can I use OpenCompass?

Use the cache files from other machines, as suggested in the answer to Network-Q1.



In evaluation phase, I’m running into an error saying that FileNotFoundError: Couldn't find a module script at opencompass/accuracy.py. Module 'accuracy' doesn't exist on the Hugging Face Hub either.

HuggingFace tries to load the metric (e.g. accuracy) as an module online, and it could fail if the network is unreachable. Please refer to Network-Q1 for guidelines to fix your network issue.

The issue has been fixed in the latest version of OpenCompass, so you might also consider pull from the latest version.




Efficiency


Why does OpenCompass partition each evaluation request into tasks?

Given the extensive evaluation time and the vast quantity of datasets, conducting a comprehensive linear evaluation on LLM models can be immensely time-consuming. To address this, OpenCompass divides the evaluation request into multiple independent “tasks”. These tasks are then dispatched to various GPU groups or nodes, achieving full parallelism and maximizing the efficiency of computational resources.



How does task partitioning work?

Each task in OpenCompass represents a combination of specific model(s) and portions of the dataset awaiting evaluation. OpenCompass offers a variety of task partitioning strategies, each tailored for different scenarios. During the inference stage, the prevalent partitioning method seeks to balance task size, or computational cost. This cost is heuristically derived from the dataset size and the type of inference.



Why does it take more time to evaluate LLM models on OpenCompass?

There is a tradeoff between the number of tasks and the time to load the model. For example, if we partition an request that evaluates a model against a dataset into 100 tasks, the model will be loaded 100 times in total. When resources are abundant, these 100 tasks can be executed in parallel, so the additional time spent on model loading can be ignored. However, if resources are limited, these 100 tasks will operate more sequentially, and repeated loadings can become a bottleneck in execution time.

Hence, if users find that the number of tasks greatly exceeds the available GPUs, we advise setting the --max-partition-size to a larger value.




Model


How to use the downloaded huggingface models?

If you have already download the checkpoints of the model, you can specify the local path of the model and tokenizer, and add trust_remote_code=True for --model-kwargs and --tokenizer-kwargs. For example

python run.py --datasets siqa_gen winograd_ppl \
--hf-path /path/to/model \  # HuggingFace 模型地址
--tokenizer-path /path/to/model \  # HuggingFace 模型地址
--model-kwargs device_map='auto' trust_remote_code=True \  # 构造 model 的参数
--tokenizer-kwargs padding_side='left' truncation='left' use_fast=False trust_remote_code=True \  # 构造 tokenizer 的参数
--max-out-len 100 \  # 模型能接受的最大序列长度
--max-seq-len 2048 \  # 最长生成 token 数
--batch-size 8 \  # 批次大小
--no-batch-padding \  # 不打开 batch padding，通过 for loop 推理，避免精度损失
--num-gpus 1  # 所需 gpu 数










            

          

      

      

    

  

    
      
          
            
  
Overview


Evaluation Targets

The primary evaluation targets of this algorithm library are large language models. We introduce specific model types for evaluation using the large language model as an example.


	base Model: Typically obtained through training on massive textual data in a self-supervised manner (e.g., OpenAI’s GPT-3, Meta’s LLaMA). These models usually have powerful text continuation capabilities.


	Chat Model: Often built upon the base model and refined through directive fine-tuning or human preference alignment (e.g., OpenAI’s ChatGPT, Shanghai AI Lab’s Scholar Pu Tongue). These models can understand human instructions and have strong conversational skills.






Tool Architecture

[image: framework-en]


	Model Layer: This encompasses the primary model categories involved in large model evaluations. OpenCompass focuses on base models and chat models for in-depth evaluations.


	Capability Layer: OpenCompass evaluates models based on general capabilities and special features. In terms of general capabilities, models are evaluated on language, knowledge, understanding, reasoning, safety, and other dimensions. In terms of special capabilities, evaluations are based on long texts, code, tools, and knowledge enhancement.


	Method Layer: OpenCompass uses both objective and subjective evaluation methods. Objective evaluations can quickly assess a model’s capability in tasks with definite answers (like multiple choice, fill in the blanks, closed-ended questions), while subjective evaluations measure user satisfaction with the model’s replies. OpenCompass uses both model-assisted subjective evaluations and human feedback-driven subjective evaluations.


	Tool Layer: OpenCompass offers extensive functionalities for automated, efficient evaluations of large language models. This includes distributed evaluation techniques, prompt engineering, integration with evaluation databases, leaderboard publishing, report generation, and many more features.






Capability Dimensions


Design Philosophy

To accurately, comprehensively, and systematically assess the capabilities of large language models, OpenCompass takes a general AI perspective, integrating cutting-edge academic advancements and industrial best practices to propose an evaluation system tailored for real-world applications. OpenCompass’s capability dimensions cover both general capabilities and special features.



General Capabilities

General capabilities encompass examination, knowledge, language, understanding, reasoning, and safety, forming a comprehensive evaluation system across these six dimensions.


Examination Capability

This dimension aims to provide evaluation support from the perspective of human development, borrowing the classification logic from pedagogy. The core idea revolves around mandatory education, higher education, and vocational training, creating a comprehensive academic capability evaluation approach.



Knowledge Capability

Knowledge capability gauges the model’s grasp on various knowledge types, including but not limited to general world knowledge and domain-specific expertise. This capability hopes that the model can answer a wide range of knowledge-based questions accurately and comprehensively.



Reasoning Capability

Reasoning is a crucial dimension for general AI. This evaluates the model’s reasoning skills, including but not limited to mathematical computation, logical reasoning, causal inference, code generation and modification, and more.



Understanding Capability

This dimension evaluates the model’s comprehension of text, including:


	Rhetorical techniques understanding and analysis: Grasping various rhetorical techniques used in text and analyzing and interpreting them.


	Text content summarization: Summarizing and extracting information from given content.


	Content creation: Open-ended or semi-open-ended content creation based on given themes or requirements.






Language Capability

This dimension evaluates the model’s prior language knowledge, which includes but is not limited to:


	Word recognition and generation: Understanding language at the word level and tasks like word recognition, classification, definition, and generation.


	Grammar understanding and correction: Grasping grammar within the text and identifying and correcting grammatical errors.


	Cross-language translation: Translating given source language into target languages, assessing multilingual capabilities of current large models.






Safety Capability

In conjunction with the technical features of large language models, OpenCompass assesses the legality, compliance, and safety of model outputs, aiding the development of safe and responsible large models. This capability includes but is not limited to:


	Fairness


	Legality


	Harmlessness


	Ethical considerations


	Privacy protection








Evaluation Methods

OpenCompass adopts a combination of objective and subjective evaluations. For capability dimensions and scenarios with definite answers, a comprehensive assessment of model capabilities is conducted using a well-constructed test set. For open-ended or semi-open-ended questions and model safety issues, a combination of objective and subjective evaluation methods is used.


Objective Evaluation

For objective questions with standard answers, we can compare the discrepancy between the model’s output and the standard answer using quantitative indicators. Given the high freedom in outputs of large language models, during evaluation, it’s essential to standardize and design its inputs and outputs to minimize the influence of noisy outputs, ensuring a more comprehensive and objective assessment.

To better elicit the model’s abilities in the evaluation domain and guide the model to output answers following specific templates, OpenCompass employs prompt engineering and in-context learning for objective evaluations.

In practice, we usually adopt the following two methods to evaluate model outputs:


	Discriminative Evaluation: This approach combines questions with candidate answers, calculates the model’s perplexity on all combinations, and selects the answer with the lowest perplexity as the model’s final output.


	Generative Evaluation: Used for generative tasks like language translation, code generation, logical analysis, etc. The question is used as the model’s original input, leaving the answer area blank for the model to fill in. Post-processing of the output is often required to ensure it meets dataset requirements.






Subjective Evaluation (Upcoming)

Language expression is lively and varied, and many scenarios and capabilities can’t be judged solely by objective indicators. For evaluations like model safety and language capabilities, subjective evaluations based on human feelings better reflect the model’s actual capabilities and align more with real-world applications.

OpenCompass’s subjective evaluation approach relies on test subject’s personal judgments to assess chat-capable large language models. In practice, we pre-construct a set of subjective test questions based on model capabilities and present different replies from various models to the same question to subjects, collecting their subjective scores. Given the high cost of subjective testing, this approach also uses high-performing large language models to simulate human subjective scoring. Actual evaluations will combine real human expert subjective evaluations with model-based subjective scores.

In conducting subjective evaluations, OpenCompass uses both Single Model Reply Satisfaction Statistics and Multiple Model Satisfaction Comparison methods.






            

          

      

      

    

  

    
      
          
            
  
Learn About Config

OpenCompass uses the OpenMMLab modern style configuration files. If you are familiar with the OpenMMLab style
configuration files, you can directly refer to
A Pure Python style Configuration File (Beta) [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta]
to understand the differences between the new-style and original configuration files. If you have not
encountered OpenMMLab style configuration files before, I will explain the usage of configuration files using
a simple example. Make sure you have installed the latest version of MMEngine to support the
new-style configuration files.


Basic Format

OpenCompass configuration files are in Python format, following basic Python syntax. Each configuration item
is specified by defining variables. For example, when defining a model, we use the following configuration:

# model_cfg.py
from opencompass.models import HuggingFaceCausalLM

models = [
    dict(
        type=HuggingFaceCausalLM,
        path='huggyllama/llama-7b',
        model_kwargs=dict(device_map='auto'),
        tokenizer_path='huggyllama/llama-7b',
        tokenizer_kwargs=dict(padding_side='left', truncation_side='left'),
        max_seq_len=2048,
        max_out_len=50,
        run_cfg=dict(num_gpus=8, num_procs=1),
    )
]





When reading the configuration file, use Config.fromfile from MMEngine for parsing:

>>> from mmengine.config import Config
>>> cfg = Config.fromfile('./model_cfg.py')
>>> print(cfg.models[0])
{'type': HuggingFaceCausalLM, 'path': 'huggyllama/llama-7b', 'model_kwargs': {'device_map': 'auto'}, ...}







Inheritance Mechanism

OpenCompass configuration files use Python’s import mechanism for file inheritance. Note that when inheriting
configuration files, we need to use the read_base context manager.

# inherit.py
from mmengine.config import read_base

with read_base():
    from .model_cfg import models  # Inherits the 'models' from model_cfg.py





Parse the configuration file using Config.fromfile:

>>> from mmengine.config import Config
>>> cfg = Config.fromfile('./inherit.py')
>>> print(cfg.models[0])
{'type': HuggingFaceCausalLM, 'path': 'huggyllama/llama-7b', 'model_kwargs': {'device_map': 'auto'}, ...}







Evaluation Configuration Example

# configs/llama7b.py
from mmengine.config import read_base

with read_base():
    # Read the required dataset configurations directly from the preset dataset configurations
    from .datasets.piqa.piqa_ppl import piqa_datasets
    from .datasets.siqa.siqa_gen import siqa_datasets

# Concatenate the datasets to be evaluated into the datasets field
datasets = [*piqa_datasets, *siqa_datasets]

# Evaluate models supported by HuggingFace's `AutoModelForCausalLM` using `HuggingFaceCausalLM`
from opencompass.models import HuggingFaceCausalLM

models = [
    dict(
        type=HuggingFaceCausalLM,
        # Initialization parameters for `HuggingFaceCausalLM`
        path='huggyllama/llama-7b',
        tokenizer_path='huggyllama/llama-7b',
        tokenizer_kwargs=dict(padding_side='left', truncation_side='left'),
        max_seq_len=2048,
        # Common parameters for all models, not specific to HuggingFaceCausalLM's initialization parameters
        abbr='llama-7b',            # Model abbreviation for result display
        max_out_len=100,            # Maximum number of generated tokens
        batch_size=16,
        run_cfg=dict(num_gpus=1),   # Run configuration for specifying resource requirements
    )
]







Dataset Configuration File Example

In the above example configuration file, we directly inherit the dataset-related configurations. Next, we will
use the PIQA dataset configuration file as an example to demonstrate the meanings of each field in the dataset
configuration file. If you do not intend to modify the prompt for model testing or add new datasets, you can
skip this section.

The PIQA dataset configuration file [https://github.com/open-compass/opencompass/blob/main/configs/datasets/piqa/piqa_ppl_1cf9f0.py] is as follows.
It is a configuration for evaluating based on perplexity (PPL) and does not use In-Context Learning.

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset

# Reading configurations
# The loaded dataset is usually organized as dictionaries, specifying the input fields used to form the prompt
# and the output field used as the answer in each sample
piqa_reader_cfg = dict(
    input_columns=['goal', 'sol1', 'sol2'],
    output_column='label',
    test_split='validation',
)

# Inference configurations
piqa_infer_cfg = dict(
    # Prompt generation configuration
    prompt_template=dict(
        type=PromptTemplate,
        # Prompt template, the template format matches the inferencer type specified later
        # Here, to calculate PPL, we need to specify the prompt template for each answer
        template={
            0: 'The following makes sense: \nQ: {goal}\nA: {sol1}\n',
            1: 'The following makes sense: \nQ: {goal}\nA: {sol2}\n'
        }),
    # In-Context example configuration, specifying `ZeroRetriever` here, which means not using in-context example.
    retriever=dict(type=ZeroRetriever),
    # Inference method configuration
    #   - PPLInferencer uses perplexity (PPL) to obtain answers
    #   - GenInferencer uses the model's generated results to obtain answers
    inferencer=dict(type=PPLInferencer))

# Metric configuration, using Accuracy as the evaluation metric
piqa_eval_cfg = dict(evaluator=dict(type=AccEvaluator))

# Dataset configuration, where all the above variables are parameters for this configuration
# It is a list used to specify the configurations of different evaluation subsets of a dataset.
piqa_datasets = [
    dict(
        type=HFDataset,
        path='piqa',
        reader_cfg=piqa_reader_cfg,
        infer_cfg=piqa_infer_cfg,
        eval_cfg=piqa_eval_cfg)





For detailed configuration of the Prompt generation configuration, you can refer to the Prompt Template.



Advanced Evaluation Configuration

In OpenCompass, we support configuration options such as task partitioner and runner for more flexible and
efficient utilization of computational resources.

By default, we use size-based partitioning for inference tasks. You can specify the sample number threshold
for task partitioning using --max-partition-size when starting the task. Additionally, we use local
resources for inference and evaluation tasks by default. If you want to use Slurm cluster resources, you can
use the --slurm parameter and the --partition parameter to specify the Slurm runner backend when starting
the task.

Furthermore, if the above functionalities do not meet your requirements for task partitioning and runner
backend configuration, you can provide more detailed configurations in the configuration file. Please refer to
Efficient Evaluation for more information.





            

          

      

      

    

  

    
      
          
            
  
Configure Datasets

This tutorial mainly focuses on selecting datasets supported by OpenCompass and preparing their configs files. Please make sure you have downloaded the datasets following the steps in Dataset Preparation.


Directory Structure of Dataset Configuration Files

First, let’s introduce the structure under the configs/datasets directory in OpenCompass, as shown below:

configs/datasets/
├── agieval
├── apps
├── ARC_c
├── ...
├── CLUE_afqmc  # dataset
│   ├── CLUE_afqmc_gen_901306.py  # different version of config
│   ├── CLUE_afqmc_gen.py
│   ├── CLUE_afqmc_ppl_378c5b.py
│   ├── CLUE_afqmc_ppl_6507d7.py
│   ├── CLUE_afqmc_ppl_7b0c1e.py
│   └── CLUE_afqmc_ppl.py
├── ...
├── XLSum
├── Xsum
└── z_bench





In the configs/datasets directory structure, we flatten all datasets directly, and there are multiple dataset configurations within the corresponding folders for each dataset.

The naming of the dataset configuration file is made up of {dataset name}_{evaluation method}_{prompt version number}.py. For example, CLUE_afqmc/CLUE_afqmc_gen_db509b.py, this configuration file is the CLUE_afqmc dataset under the Chinese universal ability, the corresponding evaluation method is gen, i.e., generative evaluation, and the corresponding prompt version number is db509b; similarly, CLUE_afqmc_ppl_00b348.py indicates that the evaluation method is ppl, i.e., discriminative evaluation, and the prompt version number is 00b348.

In addition, files without a version number, such as: CLUE_afqmc_gen.py, point to the latest prompt configuration file of that evaluation method, which is usually the most accurate prompt.



Dataset Selection

In each dataset configuration file, the dataset will be defined in the {}_datasets variable, such as afqmc_datasets in CLUE_afqmc/CLUE_afqmc_gen_db509b.py.

afqmc_datasets = [
    dict(
        abbr="afqmc-dev",
        type=AFQMCDataset_V2,
        path="./data/CLUE/AFQMC/dev.json",
        reader_cfg=afqmc_reader_cfg,
        infer_cfg=afqmc_infer_cfg,
        eval_cfg=afqmc_eval_cfg,
    ),
]





And cmnli_datasets in CLUE_cmnli/CLUE_cmnli_ppl_b78ad4.py.

cmnli_datasets = [
    dict(
        type=HFDataset,
        abbr='cmnli',
        path='json',
        split='train',
        data_files='./data/CLUE/cmnli/cmnli_public/dev.json',
        reader_cfg=cmnli_reader_cfg,
        infer_cfg=cmnli_infer_cfg,
        eval_cfg=cmnli_eval_cfg)
]





Take these two datasets as examples. If users want to evaluate these two datasets at the same time, they can create a new configuration file in the configs directory. We use the import mechanism in the mmengine configuration to build the part of the dataset parameters in the evaluation script, as shown below:

from mmengine.config import read_base

with read_base():
    from .datasets.CLUE_afqmc.CLUE_afqmc_gen_db509b import afqmc_datasets
    from .datasets.CLUE_cmnli.CLUE_cmnli_ppl_b78ad4 import cmnli_datasets

datasets = []
datasets += afqmc_datasets
datasets += cmnli_datasets





Users can choose different abilities, different datasets and different evaluation methods configuration files to build the part of the dataset in the evaluation script according to their needs.

For information on how to start an evaluation task and how to evaluate self-built datasets, please refer to the relevant documents.





            

          

      

      

    

  

    
      
          
            
  
Prepare Models

To support the evaluation of new models in OpenCompass, there are several ways:


	HuggingFace-based models


	API-based models


	Custom models





HuggingFace-based Models

In OpenCompass, we support constructing evaluation models directly from HuggingFace’s
AutoModel.from_pretrained and AutoModelForCausalLM.from_pretrained interfaces. If the model to be
evaluated follows the typical generation interface of HuggingFace models, there is no need to write code. You
can simply specify the relevant configurations in the configuration file.

Here is an example configuration file for a HuggingFace-based model:

# Use `HuggingFace` to evaluate models supported by AutoModel.
# Use `HuggingFaceCausalLM` to evaluate models supported by AutoModelForCausalLM.
from opencompass.models import HuggingFaceCausalLM

models = [
    dict(
        type=HuggingFaceCausalLM,
        # Parameters for `HuggingFaceCausalLM` initialization.
        path='huggyllama/llama-7b',
        tokenizer_path='huggyllama/llama-7b',
        tokenizer_kwargs=dict(padding_side='left', truncation_side='left'),
        max_seq_len=2048,
        batch_padding=False,
        # Common parameters shared by various models, not specific to `HuggingFaceCausalLM` initialization.
        abbr='llama-7b',            # Model abbreviation used for result display.
        max_out_len=100,            # Maximum number of generated tokens.
        batch_size=16,              # The size of a batch during inference.
        run_cfg=dict(num_gpus=1),   # Run configuration to specify resource requirements.
    )
]





Explanation of some of the parameters:


	batch_padding=False: If set to False, each sample in a batch will be inferred individually. If set to True,
a batch of samples will be padded and inferred together. For some models, such padding may lead to
unexpected results. If the model being evaluated supports sample padding, you can set this parameter to True
to speed up inference.


	padding_side='left': Perform padding on the left side. Not all models support padding, and padding on the
right side may interfere with the model’s output.


	truncation_side='left': Perform truncation on the left side. The input prompt for evaluation usually
consists of both the in-context examples prompt and the input prompt. If the right side of the input prompt
is truncated, it may cause the input of the generation model to be inconsistent with the expected format.
Therefore, if necessary, truncation should be performed on the left side.




During evaluation, OpenCompass will instantiate the evaluation model based on the type and the
initialization parameters specified in the configuration file. Other parameters are used for inference,
summarization, and other processes related to the model. For example, in the above configuration file, we will
instantiate the model as follows during evaluation:

model = HuggingFaceCausalLM(
    path='huggyllama/llama-7b',
    tokenizer_path='huggyllama/llama-7b',
    tokenizer_kwargs=dict(padding_side='left', truncation_side='left'),
    max_seq_len=2048,
)







API-based Models

Currently, OpenCompass supports API-based model inference for the following:


	OpenAI (opencompass.models.OpenAI)


	ChatGLM (opencompass.models.ZhiPuAI)


	ABAB-Chat from MiniMax (opencompass.models.MiniMax)


	XunFei from XunFei (opencompass.models.XunFei)




Let’s take the OpenAI configuration file as an example to see how API-based models are used in the
configuration file.

from opencompass.models import OpenAI

models = [
    dict(
        type=OpenAI,                             # Using the OpenAI model
        # Parameters for `OpenAI` initialization
        path='gpt-4',                            # Specify the model type
        key='YOUR_OPENAI_KEY',                   # OpenAI API Key
        max_seq_len=2048,                        # The max input number of tokens
        # Common parameters shared by various models, not specific to `OpenAI` initialization.
        abbr='GPT-4',                            # Model abbreviation used for result display.
        max_out_len=512,                         # Maximum number of generated tokens.
        batch_size=1,                            # The size of a batch during inference.
        run_cfg=dict(num_gpus=0),                # Resource requirements (no GPU needed)
    ),
]





We have provided several examples for API-based models. Please refer to

configs
├── eval_zhipu.py
├── eval_xunfei.py
└── eval_minimax.py







Custom Models

If the above methods do not support your model evaluation requirements, you can refer to
Supporting New Models to add support for new models in OpenCompass.





            

          

      

      

    

  

    
      
          
            
  
Efficient Evaluation

OpenCompass supports custom task partitioners (Partitioner), which enable flexible division of evaluation tasks. In conjunction with Runner, which controls the platform for task execution, such as a local machine or a cluster, OpenCompass can distribute large evaluation tasks to a vast number of computing nodes. This helps utilize computational resources efficiently and significantly accelerates the evaluation process.

By default, OpenCompass hides these details from users and automatically selects the recommended execution strategies. But users can still customize these strategies of the workflows according to their needs, just by adding the infer and/or eval fields to the configuration file:

from opencompass.partitioners import SizePartitioner, NaivePartitioner
from opencompass.runners import SlurmRunner
from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask

infer = dict(
    partitioner=dict(type=SizePartitioner, max_task_size=5000),
    runner=dict(
        type=SlurmRunner,
        max_num_workers=64,
        task=dict(type=OpenICLInferTask),
        retry=5),
)

eval = dict(
    partitioner=dict(type=NaivePartitioner),
    runner=dict(
        type=LocalRunner,
        max_num_workers=32,
        task=dict(type=OpenICLEvalTask)),
)





The example above demonstrates the way to configure the execution strategies for the inference and evaluation stages. At the inference stage, the task will be divided into several sub-tasks, each of 5000 samples, and then submitted to the Slurm cluster for execution, where there are at most 64 tasks running in parallel. At the evaluation stage, each single model-dataset pair forms a task, and 32 processes are launched locally to compute the metrics.

The following sections will introduce the involved modules in detail.


Task Partition (Partitioner)

Due to the long inference time of large language models and the vast amount of evaluation datasets, serial execution of a single evaluation task can be quite time-consuming. OpenCompass allows custom task partitioners (Partitioner) to divide large evaluation tasks into numerous independent smaller tasks, thus fully utilizing computational resources via parallel execution. Users can configure the task partitioning strategies for the inference and evaluation stages via infer.partitioner and eval.partitioner. Below, we will introduce all the partitioning strategies supported by OpenCompass.


NaivePartitioner

This partitioner dispatches each combination of a model and dataset as an independent task. It is the most basic partitioning strategy and does not have any additional parameters.

from opencompass.partitioners import NaivePartitioner

infer = dict(
    partitioner=dict(type=NaivePartitioner)
    # ...
)







SizePartitioner


Warning

For now, this partitioner is not suitable for evaluation tasks (OpenICLEvalTask).



This partitioner estimates the inference cost (time) of a dataset according to its size, multiplied by an empirical expansion coefficient. It then creates tasks by splitting larger datasets and merging smaller ones to ensure the inference costs of each sub-task are as equal as possible.

The commonly used parameters for this partitioner are as follows:

from opencompass.partitioners import SizePartitioner

infer = dict(
    partitioner=dict(
        type=SizePartitioner,
        max_task_size: int = 2000,  # Maximum size of each task
        gen_task_coef: int = 20,  # Expansion coefficient for generative tasks
    ),
    # ...
)





SizePartitioner estimates the inference cost of a dataset based on the type of the inference task and selects different expansion coefficients accordingly. For generative tasks, such as those using GenInferencer, a larger gen_task_coef is set; for discriminative tasks, like those using PPLInferencer, the number of labels in the prompt is used.


Note

Currently, this partitioning strategy is still rather crude and does not accurately reflect the computational difference between generative and discriminative tasks. We look forward to the community proposing better partitioning strategies :)






Execution Backend (Runner)

In a multi-card, multi-machine cluster environment, if we want to implement parallel execution of multiple tasks, we usually need to rely on a cluster management system (like Slurm) for task allocation and scheduling. In OpenCompass, task allocation and execution are uniformly handled by the Runner. Currently, it supports both Slurm and PAI-DLC scheduling backends, and also provides a LocalRunner to directly launch tasks on the local machine.


LocalRunner

LocalRunner is the most basic runner that can run tasks parallelly on the local machine.

from opencompass.runners import LocalRunner
from opencompass.tasks import OpenICLInferTask

infer = dict(
    # ...
    runner=dict(
        type=LocalRunner,
        max_num_workers=16,  # Maximum number of processes to run in parallel
        task=dict(type=OpenICLEvalTask),  # Task to be run
    )
)






Note

The actual number of running tasks are both limited by the actual available GPU resources and the number of workers.





SlurmRunner

SlurmRunner submits tasks to run on the Slurm cluster. The commonly used configuration fields are as follows:

from opencompass.runners import SlurmRunner
from opencompass.tasks import OpenICLInferTask

infer = dict(
    # ...
    runner=dict(
        type=SlurmRunner,
        task=dict(type=OpenICLEvalTask),  # Task to be run
        max_num_workers=16,  # Maximum concurrent evaluation task count
        retry=2,  # Retry count for failed tasks, can prevent accidental errors
    ),
)







DLCRunner

DLCRunner submits tasks to run on Alibaba’s Deep Learning Center (DLC). This Runner depends on dlc. Firstly, you need to prepare dlc in the environment:

cd ~
wget https://dlc-cli.oss-cn-zhangjiakou.aliyuncs.com/light/binary/linux/amd64/dlc
chmod +x ./dlc
sudo ln -rs dlc /usr/local/bin
./dlc config





Fill in the necessary information according to the prompts and get the dlc configuration file (like /user/.dlc/config) to complete the preparation. Then, specify the DLCRunner configuration in the configuration file as per the format:

from opencompass.runners import DLCRunner
from opencompass.tasks import OpenICLInferTask

infer = dict(
    # ...
    runner=dict(
        type=DLCRunner,
        task=dict(type=OpenICLEvalTask),  # Task to be run
        max_num_workers=16,  # Maximum concurrent evaluation task count
        aliyun_cfg=dict(
            bashrc_path="/user/.bashrc",  # Path to the bashrc for initializing the running environment
            conda_env_name='opencompass',  # Conda environment for OpenCompass
            dlc_config_path="/user/.dlc/config",  # Configuration file for dlc
            workspace_id='ws-xxx',  # DLC workspace ID
            worker_image='xxx',  # Image url for running tasks
        ),
        retry=2,  # Retry count for failed tasks, can prevent accidental errors
    ),
)








Task

A Task is a fundamental module in OpenCompass, a standalone script that executes the computationally intensive operations. Each task is designed to load a configuration file to determine parameter settings, and it can be executed in two distinct ways:


	Instantiate a Task object, then call task.run().


	Call get_command method by passing in the config path and the command template string that contains {task_cmd} as a placeholder (e.g. srun {task_cmd}). The returned command string will be the full command and can be executed directly.




As of now, OpenCompass supports the following task types:


	OpenICLInferTask: Perform LM Inference task based on OpenICL framework.


	OpenICLEvalTask: Perform LM Evaluation task based on OpenEval framework.




In the future, more task types will be supported.





            

          

      

      

    

  

    
      
          
            
  
Task Execution and Monitoring


Launching an Evaluation Task

The program entry for the evaluation task is run.py. The usage is as follows:

python run.py $EXP {--slurm | --dlc | None} [-p PARTITION] [-q QUOTATYPE] [--debug] [-m MODE] [-r [REUSE]] [-w WORKDIR] [-l] [--dry-run] [--dump-eval-details]





Task Configuration ($EXP):


	run.py accepts a .py configuration file as task-related parameters, which must include the datasets and models fields.

python run.py configs/eval_demo.py







	If no configuration file is provided, users can also specify models and datasets using --models MODEL1 MODEL2 ... and --datasets DATASET1 DATASET2 ...:

python run.py --models hf_opt_350m hf_opt_125m --datasets siqa_gen winograd_ppl







	For HuggingFace related models, users can also define a model quickly in the command line through HuggingFace parameters and then specify datasets using --datasets DATASET1 DATASET2 ....

python run.py --datasets siqa_gen winograd_ppl \
--hf-path huggyllama/llama-7b \  # HuggingFace model path
--model-kwargs device_map='auto' \  # Parameters for constructing the model
--tokenizer-kwargs padding_side='left' truncation='left' use_fast=False \  # Parameters for constructing the tokenizer
--max-out-len 100 \  # Maximum sequence length the model can accept
--max-seq-len 2048 \  # Maximum generated token count
--batch-size 8 \  # Batch size
--no-batch-padding \  # Disable batch padding and infer through a for loop to avoid accuracy loss
--num-gpus 1  # Number of minimum required GPUs for this model





Complete HuggingFace parameter descriptions:


	--hf-path: HuggingFace model path


	--peft-path: PEFT model path


	--tokenizer-path: HuggingFace tokenizer path (if it’s the same as the model path, it can be omitted)


	--model-kwargs: Parameters for constructing the model


	--tokenizer-kwargs: Parameters for constructing the tokenizer


	--max-out-len: Maximum generated token count


	--max-seq-len: Maximum sequence length the model can accept


	--no-batch-padding: Disable batch padding and infer through a for loop to avoid accuracy loss


	--batch-size: Batch size


	--num-gpus: Number of GPUs required to run the model. Please note that this parameter is only used to determine the number of GPUs required to run the model, and does not affect the actual number of GPUs used for the task. Refer to Efficient Evaluation for more details.








Starting Methods:


	Running on local machine: run.py $EXP.


	Running with slurm: run.py $EXP --slurm -p $PARTITION_name.


	Running with dlc: run.py $EXP --dlc --aliyun-cfg $AliYun_Cfg


	Customized starting: run.py $EXP. Here, $EXP is the configuration file which includes the eval and infer fields. For detailed configurations, please refer to Efficient Evaluation.




The parameter explanation is as follows:


	-p: Specify the slurm partition;


	-q: Specify the slurm quotatype (default is None), with optional values being reserved, auto, spot. This parameter may only be used in some slurm variants;


	--debug: When enabled, inference and evaluation tasks will run in single-process mode, and output will be echoed in real-time for debugging;


	-m: Running mode, default is all. It can be specified as infer to only run inference and obtain output results; if there are already model outputs in {WORKDIR}, it can be specified as eval to only run evaluation and obtain evaluation results; if the evaluation results are ready, it can be specified as viz to only run visualization, which summarizes the results in tables; if specified as all, a full run will be performed, which includes inference, evaluation, and visualization.


	-r: Reuse existing inference results, and skip the finished tasks. If followed by a timestamp, the result under that timestamp in the workspace path will be reused; otherwise, the latest result in the specified workspace path will be reused.


	-w: Specify the working path, default is ./outputs/default.


	-l: Enable status reporting via Lark bot.


	--dry-run: When enabled, inference and evaluation tasks will be dispatched but won’t actually run for debugging.


	--dump-eval-details: When enabled，evaluation under the results folder will include more details, such as the correctness of each sample.




Using run mode -m all as an example, the overall execution flow is as follows:


	Read the configuration file, parse out the model, dataset, evaluator, and other configuration information


	The evaluation task mainly includes three stages: inference infer, evaluation eval, and visualization viz. After task division by Partitioner, they are handed over to Runner for parallel execution. Individual inference and evaluation tasks are abstracted into OpenICLInferTask and OpenICLEvalTask respectively.


	After each stage ends, the visualization stage will read the evaluation results in results/ to generate a table.






Task Monitoring: Lark Bot

Users can enable real-time monitoring of task status by setting up a Lark bot. Please refer to this document [https://open.feishu.cn/document/ukTMukTMukTM/ucTM5YjL3ETO24yNxkjN?lang=zh-CN#7a28964d] for setting up the Lark bot.

Configuration method:


	Open the configs/lark.py file, and add the following line:

lark_bot_url = 'YOUR_WEBHOOK_URL'





Typically, the Webhook URL is formatted like this: https://open.feishu.cn/open-apis/bot/v2/hook/xxxxxxxxxxxxxxxxx .



	Inherit this file in the complete evaluation configuration:

  from mmengine.config import read_base

  with read_base():
      from .lark import lark_bot_url








	To avoid frequent messages from the bot becoming a nuisance, status updates are not automatically reported by default. You can start status reporting using -l or --lark when needed:

python run.py configs/eval_demo.py -p {PARTITION} -l











Run Results

All run results will be placed in outputs/default/ directory by default, the directory structure is shown below:

outputs/default/
├── 20200220_120000
├── ...
├── 20230220_183030
│   ├── configs
│   ├── logs
│   │   ├── eval
│   │   └── infer
│   ├── predictions
│   │   └── MODEL1
│   └── results
│       └── MODEL1





Each timestamp contains the following content:


	configs folder, which stores the configuration files corresponding to each run with this timestamp as the output directory;


	logs folder, which stores the output log files of the inference and evaluation phases, each folder will store logs in subfolders by model;


	predictions folder, which stores the inferred json results, with a model subfolder;


	results folder, which stores the evaluated json results, with a model subfolder.




Also, all -r without specifying a corresponding timestamp will select the newest folder by sorting as the output directory.



Introduction of Summerizer (to be updated)





            

          

      

      

    

  

    
      
          
            
  
Metric Calculation

In the evaluation phase, we typically select the corresponding evaluation metric strategy based on the characteristics of the dataset itself. The main criterion is the type of standard answer, generally including the following types:


	Choice: Common in classification tasks, judgment questions, and multiple-choice questions. Currently, this type of question dataset occupies the largest proportion, with datasets such as MMLU, CEval, etc. Accuracy is usually used as the evaluation standard– ACCEvaluator.


	Phrase: Common in Q&A and reading comprehension tasks. This type of dataset mainly includes CLUE_CMRC, CLUE_DRCD, DROP datasets, etc. Matching rate is usually used as the evaluation standard–EMEvaluator.


	Sentence: Common in translation and generating pseudocode/command-line tasks, mainly including Flores, Summscreen, Govrepcrs, Iwdlt2017 datasets, etc. BLEU (Bilingual Evaluation Understudy) is usually used as the evaluation standard–BleuEvaluator.


	Paragraph: Common in text summary generation tasks, commonly used datasets mainly include Lcsts, TruthfulQA, Xsum datasets, etc. ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is usually used as the evaluation standard–RougeEvaluator.


	Code: Common in code generation tasks, commonly used datasets mainly include Humaneval, MBPP datasets, etc. Execution pass rate and pass@k are usually used as the evaluation standard. At present, Opencompass supports MBPPEvaluator and HumanEvaluator.




There is also a type of scoring-type evaluation task without standard answers, such as judging whether the output of a model is toxic, which can directly use the related API service for scoring. At present, it supports ToxicEvaluator, and currently, the realtoxicityprompts dataset uses this evaluation method.


Supported Evaluation Metrics

Currently, in OpenCompass, commonly used Evaluators are mainly located in the opencompass/openicl/icl_evaluator [https://github.com/open-compass/opencompass/tree/main/opencompass/openicl/icl_evaluator] folder. There are also some dataset-specific indicators that are placed in parts of opencompass/datasets [https://github.com/open-compass/opencompass/tree/main/opencompass/datasets]. Below is a summary:



	Evaluation Strategy

	Evaluation Metrics

	Common Postprocessing Method

	Datasets





	ACCEvaluator

	Accuracy

	first_capital_postprocess

	agieval, ARC, bbh, mmlu, ceval, commonsenseqa, crowspairs, hellaswag



	EMEvaluator

	Match Rate

	None, dataset-specific

	drop, CLUE_CMRC, CLUE_DRCD



	BleuEvaluator

	BLEU

	None, flores

	flores, iwslt2017, summscreen, govrepcrs



	RougeEvaluator

	ROUGE

	None, dataset-specific

	truthfulqa, Xsum, XLSum



	JiebaRougeEvaluator

	ROUGE

	None, dataset-specific

	lcsts



	HumanEvaluator

	pass@k

	humaneval_postprocess

	humaneval_postprocess



	MBPPEvaluator

	Execution Pass Rate

	None

	mbpp



	ToxicEvaluator

	PerspectiveAPI

	None

	realtoxicityprompts



	AGIEvalEvaluator

	Accuracy

	None

	agieval



	AUCROCEvaluator

	AUC-ROC

	None

	jigsawmultilingual, civilcomments



	MATHEvaluator

	Accuracy

	math_postprocess

	math



	MccEvaluator

	Matthews Correlation

	None

	–



	SquadEvaluator

	F1-scores

	None

	–








How to Configure

The evaluation standard configuration is generally placed in the dataset configuration file, and the final xxdataset_eval_cfg will be passed to dataset.infer_cfg as an instantiation parameter.

Below is the definition of govrepcrs_eval_cfg, and you can refer to configs/datasets/govrepcrs [https://github.com/open-compass/opencompass/tree/main/configs/datasets/govrepcrs].

from opencompass.openicl.icl_evaluator import BleuEvaluator
from opencompass.datasets import GovRepcrsDataset
from opencompass.utils.text_postprocessors import general_cn_postprocess

govrepcrs_reader_cfg = dict(.......)
govrepcrs_infer_cfg = dict(.......)

# Configuration of evaluation metrics
govrepcrs_eval_cfg = dict(
    evaluator=dict(type=BleuEvaluator),            # Use the common translator evaluator BleuEvaluator
    pred_role='BOT',                               # Accept 'BOT' role output
    pred_postprocessor=dict(type=general_cn_postprocess),      # Postprocessing of prediction results
    dataset_postprocessor=dict(type=general_cn_postprocess))   # Postprocessing of dataset standard answers

govrepcrs_datasets = [
    dict(
        type=GovRepcrsDataset,                 # Dataset class name
        path='./data/govrep/',                 # Dataset path
        abbr='GovRepcrs',                      # Dataset alias
        reader_cfg=govrepcrs_reader_cfg,       # Dataset reading configuration file, configure its reading split, column, etc.
        infer_cfg=govrepcrs_infer_cfg,         # Dataset inference configuration file, mainly related to prompt
        eval_cfg=govrepcrs_eval_cfg)           # Dataset result evaluation configuration file, evaluation standard, and preprocessing and postprocessing.
]









            

          

      

      

    

  

    
      
          
            
  
Results Summary

After the evaluation is complete, the results need to be printed on the screen or saved. This process is controlled by the summarizer.


Note

If the summarizer appears in the overall config, all the evaluation results will be output according to the following logic.
If the summarizer does not appear in the overall config, the evaluation results will be output in the order they appear in the dataset config.




Example

A typical summarizer configuration file is as follows:

summarizer = dict(
    dataset_abbrs = [
        'race',
        'race-high',
        'race-middle',
    ],
    summary_groups=[
        {'name': 'race', 'subsets': ['race-high', 'race-middle']},
    ]
)





The output is:

dataset      version    metric         mode      internlm-7b-hf
-----------  ---------  -------------  ------  ----------------
race         -          naive_average  ppl                76.23
race-high    0c332f     accuracy       ppl                74.53
race-middle  0c332f     accuracy       ppl                77.92





The summarizer tries to read the evaluation scores from the {work_dir}/results/ directory using the models and datasets in the config as the full set. It then displays them in the order of the summarizer.dataset_abbrs list. Moreover, the summarizer tries to compute some aggregated metrics using summarizer.summary_groups. The name metric is only generated if and only if all values in subsets exist. This means if some scores are missing, the aggregated metric will also be missing. If scores can’t be fetched by the above methods, the summarizer will use - in the respective cell of the table.

In addition, the output consists of multiple columns:


	The dataset column corresponds to the summarizer.dataset_abbrs configuration.


	The version column is the hash value of the dataset, which considers the dataset’s evaluation method, prompt words, output length limit, etc. Users can verify whether two evaluation results are comparable using this column.


	The metric column indicates the evaluation method of this metric. For specific details, metrics.


	The mode column indicates how the inference result is obtained. Possible values are ppl / gen. For items in summarizer.summary_groups, if the methods of obtaining subsets are consistent, its value will be the same as subsets, otherwise it will be mixed.


	The subsequent columns represent different models.






Field Description

The fields of summarizer are explained as follows:


	dataset_abbrs: (list, optional) Display list items. If omitted, all evaluation results will be output.


	summary_groups: (list, optional) Configuration for aggregated metrics.




The fields in summary_groups are:


	name: (str) Name of the aggregated metric.


	subsets: (list) Names of the metrics that are aggregated. Note that it can not only be the original dataset_abbr but also the name of another aggregated metric.


	weights: (list, optional) Weights of the metrics being aggregated. If omitted, the default is to use unweighted averaging.




Please note that we have stored the summary groups of datasets like MMLU, C-Eval, etc., under the configs/summarizers/groups path. It’s recommended to consider using them first.





            

          

      

      

    

  

    
      
          
            
  
Performance of Common Benchmarks

We have identified several well-known benchmarks for evaluating large language models (LLMs), and provide detailed performance results of famous LLMs on these datasets.



	Model

	Version

	Metric

	Mode

	GPT-4-1106

	GPT-4-0409

	Claude-3-Opus

	Llama-3-70b-Instruct(lmdeploy)

	Mixtral-8x22B-Instruct-v0.1





	MMLU

	-

	naive_average

	gen

	83.6

	84.2

	84.6

	80.5

	77.2



	CMMLU

	-

	naive_average

	gen

	71.9

	72.4

	74.2

	70.1

	59.7



	CEval-Test

	-

	naive_average

	gen

	69.7

	70.5

	71.7

	66.9

	58.7



	GaokaoBench

	-

	weighted_average

	gen

	74.8

	76.0

	74.2

	67.8

	60.0



	Triviaqa_wiki(1shot)

	01cf41

	score

	gen

	73.1

	82.9

	82.4

	89.8

	89.7



	NQ_open(1shot)

	eaf81e

	score

	gen

	27.9

	30.4

	39.4

	40.1

	46.8



	Race-High

	9a54b6

	accuracy

	gen

	89.3

	89.6

	90.8

	89.4

	84.8



	WinoGrande

	6447e6

	accuracy

	gen

	80.7

	83.3

	84.1

	69.7

	76.6



	HellaSwag

	e42710

	accuracy

	gen

	92.7

	93.5

	94.6

	87.7

	86.1



	BBH

	-

	naive_average

	gen

	82.7

	78.5

	78.5

	80.5

	79.1



	GSM-8K

	1d7fe4

	accuracy

	gen

	80.5

	79.7

	87.7

	90.2

	88.3



	Math

	393424

	accuracy

	gen

	61.9

	71.2

	60.2

	47.1

	50



	TheoremQA

	ef26ca

	accuracy

	gen

	28.4

	23.3

	29.6

	25.4

	13



	HumanEval

	8e312c

	humaneval_pass@1

	gen

	74.4

	82.3

	76.2

	72.6

	72.0



	MBPP(sanitized)

	1e1056

	score

	gen

	78.6

	77.0

	76.7

	71.6

	68.9



	GPQA_diamond

	4baadb

	accuracy

	gen

	40.4

	48.5

	46.5

	38.9

	36.4



	IFEval

	3321a3

	Prompt-level-strict-accuracy

	gen

	71.9

	79.9

	80.0

	77.1

	65.8









            

          

      

      

    

  

    
      
          
            
  
Prompt Overview

The prompt is the input to the Language Model (LLM), used to guide the model to generate text or calculate perplexity (PPL). The selection of prompts can significantly impact the accuracy of the evaluated model. The process of converting the dataset into a series of prompts is defined by templates.

In OpenCompass, we split the template into two parts: the data-side template and the model-side template. When evaluating a model, the data will pass through both the data-side template and the model-side template, ultimately transforming into the input required by the model.

The data-side template is referred to as prompt_template, which represents the process of converting the fields in the dataset into prompts.

The model-side template is referred to as meta_template, which represents how the model transforms these prompts into its expected input.

We also offer some prompting examples regarding Chain of Thought.




            

          

      

      

    

  

    
      
          
            
  
Prompt Template


Background

In language model evaluation, we often construct prompts from the original dataset according to certain rules to enable the model to answer questions as required.

Typically, we place instructions at the beginning of the prompt, followed by several in-context examples, and finally, we include the question. For example:

Solve the following questions.
1+1=?
2
3+9=?
12
5+6=?





Extensive experiments have shown that even with the same original test questions, different ways of constructing the prompt can affect the model’s performance. Factors that may influence this include:


	The composition of the prompt itself, including instructions, in-context examples, and the format of the question.


	The selection of in-context examples, including the number and method of selection.


	The manner in which the prompt is used. Should the model complete the prompt based on the given context, or should it choose the best prompt among the candidate prompts?




OpenCompass defines the prompt construction strategy in the infer_cfg section of the dataset configuration. A typical infer_cfg is shown below:

infer_cfg = dict(
    ice_template=dict(  # Template used to construct In Context Examples (ice).
        type=PromptTemplate,
        template='{question}\n{answer}'
    ),
    prompt_template=dict(  # Template used to construct the main prompt.
        type=PromptTemplate,
        template='Solve the following questions.\n</E>{question}\n{answer}',
        ice_token="</E>"
    ),
    retriever=dict(type=FixKRetriever, fix_id_list=[0, 1]),  # Definition of how to retrieve in-context examples.
    inferencer=dict(type=GenInferencer),  # Method used to generate predictions.
)





In this document, we will mainly introduce the definitions of ice_template, prompt_template, and inferencer. For information on the retriever, please refer to other documents.

Let’s start by introducing the basic syntax of the prompt.



String-Based Prompt

String-based prompt is a classic form of template. Consider the following template:

prompt_template=dict(
    type=PromptTemplate,
    template="{anything}\nQuestion: {question}\nAnswer: {answer}"
)





At runtime, the fields within the {} will be replaced with corresponding fields from the data sample. If a field does not exist in the data sample, it will be kept as is in the output.

For example, let’s consider a data example as follows:

example = {
    'question': '1+1=?',
    'answer': '2',  # Assume the answer is in the reader_cfg.output_column
    'irrelevant_infos': 'blabla',
}





After filling in the template, the result will be:

{anything}
Question: 1+1=?
Answer:





As you can see, the actual answer for the question, represented by the field answer, does not appear in the generated result. This is because OpenCompass will mask fields that are written in reader_cfg.output_column to prevent answer leakage. For detailed explanations on reader_cfg, please refer to the relevant documentation on dataset configuration.



Dialogue-Based Prompt

In practical testing, making models perform simple completions may not effectively test the performance of chat-based models. Therefore, we prefer prompts that take the form of dialogues. Additionally, different models have varying definitions of dialogue formats. Hence, we need prompts generated from the dataset to be more versatile, and the specific prompts required by each model can be generated during testing.

To achieve this, OpenCompass extends the string-based prompt to dialogue-based prompt. Dialogue-based prompt is more flexible, as it can combine with different meta_templates on the model side to generate prompts in various dialogue formats. It is applicable to both base and chat models, but their definitions are relatively complex.

Now, let’s assume we have a data sample as follows:

example = {
    'question': '1+1=?',
    'answer': '2',  # Assume the answer is in the reader_cfg.output_column
    'irrelavent_infos': 'blabla',
}





Next, let’s showcase a few examples:


Single-round DialogueMulti-round DialogueDialogue with sys instruction
prompt_template=dict(
    type=PromptTemplate,
    template=dict(
        round=[
            dict(role="HUMAN", prompt="Question: {question}"),
            dict(role="BOT", prompt="Answer: {answer}"),
        ]
    )
)





The intermediate result obtained by OpenCompass after filling the data into the template is:

PromptList([
    dict(role='HUMAN', prompt='Question: 1+1=?'),
    dict(role='BOT', prompt='Answer: '),
])






prompt_template=dict(
    type=PromptTemplate,
    template=dict(
        round=[
            dict(role="HUMAN", prompt="Question: 2+2=?"),
            dict(role="BOT", prompt="Answer: 4"),
            dict(role="HUMAN", prompt="Question: 3+3=?"),
            dict(role="BOT", prompt="Answer: 6"),
            dict(role="HUMAN", prompt="Question: {question}"),
            dict(role="BOT", prompt="Answer: {answer}"),
        ]
    )
)





The intermediate result obtained by OpenCompass after filling the data into the template is:

PromptList([
    dict(role='HUMAN', prompt='Question: 2+2=?'),
    dict(role='BOT', prompt='Answer: 4'),
    dict(role='HUMAN', prompt='Question: 3+3=?'),
    dict(role='BOT', prompt='Answer: 6'),
    dict(role='HUMAN', prompt='Question: 1+1=?'),
    dict(role='BOT', prompt='Answer: '),
])






prompt_template=dict(
    type=PromptTemplate,
    template=dict(
        begin=[
            dict(role='SYSTEM', fallback_role='HUMAN', prompt='Solve the following questions.'),
        ],
        round=[
            dict(role="HUMAN", prompt="Question: {question}"),
            dict(role="BOT", prompt="Answer: {answer}"),
        ]
    )
)





The intermediate result obtained by OpenCompass after filling the data into the template is:

PromptList([
    dict(role='SYSTEM', fallback_role='HUMAN', prompt='Solve the following questions.'),
    dict(role='HUMAN', prompt='Question: 1+1=?'),
    dict(role='BOT', prompt='Answer: '),
])





During the processing of a specific meta template, if the definition includes the SYSTEM role, the template designated for the SYSTEM role will be used for processing. On the other hand, if the SYSTEM role is not defined, the template assigned to the fallback_role role will be utilized, which, in this example, corresponds to the HUMAN role.




In dialogue-based templates, prompts are organized in the form of conversations between different roles (role). In the current predefined dataset configuration of OpenCompass, some commonly used roles in a prompt include:


	HUMAN: Represents a human, usually the one asking questions.


	BOT: Represents the language model, usually the one providing answers.


	SYSTEM: Represents the system, typically used at the beginning of prompts to give instructions.




Furthermore, unlike string-based templates, the prompts generated by dialogue-based templates are transformed into an intermediate structure called PromptList. This structure will be further combined with the model-side meta_templates to assemble the final prompt. If no meta template is specified, the prompts in the PromptList will be directly concatenated into a single string.


Note

The content within the PromptList in the example above is not the final input to the model and depends on the processing of the meta template. One potential source of misunderstanding is that in generative evaluations, the prompt of the last BOT role, Answer: , will not be inputted to the model. This is because API models generally cannot customize the initial part of model-generated responses. Therefore, this setting ensures consistency in the evaluation behavior between language models and API models. For more information, please refer to the documentation on meta template.




Expand the complete parameter descriptions

	begin, end: (list, optional) The beginning and end of the prompt, typically containing system-level instructions. Each item inside can be a dictionary or a string.


	round: (list) The format of the dialogue in the template. Each item in the list must be a dictionary.




Each dictionary has the following parameters:


	role (str): The role name participating in the dialogue. It is used to associate with the names in meta_template but does not affect the actual generated prompt.


	fallback_role (str): The default role name to use in case the associated role is not found in the meta_template. Defaults to None.


	prompt (str): The dialogue content for the role.







Prompt Templates and inferencer

Once we understand the basic definition of prompt templates, we also need to organize them according to the type of inferencer.

OpenCompass mainly supports two types of inferencers: GenInferencer and PPLInferencer, corresponding to two different inference methods.

GenInferencer corresponds to generative inference. During inference, the model is asked to continue generating text based on the input prompt. In this case, the template represents a single template for each sentence, for example:


String-based PromptDialogue-Based Prompt
prompt_template=dict(
    type=PromptTemplate,
    template='Solve the following questions.\n{question}\n{answer}'
)






prompt_template=dict(
    type=PromptTemplate,
    template=dict(
        begin=[
            dict(role='SYSTEM', fallback_role='HUMAN', prompt='Solve the following questions.'),
        ],
        round=[
            dict(role="HUMAN", prompt="{question}"),
            dict(role="BOT", prompt="{answer}"),
        ]
    )
)








Then, the model’s inference result will be a continuation of the concatenated string.

For PPLInferencer, it corresponds to discriminative inference. During inference, the model is asked to compute the perplexity (PPL) for each input string and select the item with the lowest perplexity as the model’s inference result. In this case, template is a dict representing the template for each sentence, for example:


String-based PromptDialogue-Based Prompt
prompt_template=dict(
    type=PromptTemplate,
    template=dict(
        "A": "Question: Which is true?\nA. {A}\nB. {B}\nC. {C}\nAnswer: A",
        "B": "Question: Which is true?\nA. {A}\nB. {B}\nC. {C}\nAnswer: B",
        "C": "Question: Which is true?\nA. {A}\nB. {B}\nC. {C}\nAnswer: C",
        "UNK": "Question: Which is true?\nA. {A}\nB. {B}\nC. {C}\nAnswer: None of them is true.",
    )
)






prompt_template=dict(
    type=PromptTemplate,
    template=dict(
        "A": dict(
            round=[
                dict(role="HUMAN", prompt="Question: Which is true?\nA. {A}\nB. {B}\nC. {C}"),
                dict(role="BOT", prompt="Answer: A"),
            ]
        ),
        "B": dict(
            round=[
                dict(role="HUMAN", prompt="Question: Which is true?\nA. {A}\nB. {B}\nC. {C}"),
                dict(role="BOT", prompt="Answer: B"),
            ]
        ),
        "C": dict(
            round=[
                dict(role="HUMAN", prompt="Question: Which is true?\nA. {A}\nB. {B}\nC. {C}"),
                dict(role="BOT", prompt="Answer: C"),
            ]
        ),
        "UNK": dict(
            round=[
                dict(role="HUMAN", prompt="Question: Which is true?\nA. {A}\nB. {B}\nC. {C}"),
                dict(role="BOT", prompt="Answer: None of them is true."),
            ]
        ),
    )
)








In this case, the model’s inference result will be one of the four keys in the template (“A” / “B” / “C” / “UNK”).



ice_template and prompt_template

In OpenCompass, for 0-shot evaluation, we usually only need to define the prompt_template field to complete prompt construction. However, for few-shot evaluation, we also need to define the ice_template field, which manages the prompt templates corresponding to the in-context examples during context learning.

Both ice_template and prompt_template follow the same syntax and rules. The complete prompt construction process can be represented using the following pseudo-code:

def build_prompt():
    ice = ice_template.format(*ice_example)
    prompt = prompt_template.replace(prompt_template.ice_token, ice).format(*prompt_example)
    return prompt





Now, let’s assume there are two training data (ex1, ex2) and one testing data (ex3):

ex1 = {
    'question': '2+2=?',
    'answer': '4',
    'irrelavent_infos': 'blabla',
}
ex2 = {
    'question': '3+3=?',
    'answer': '6',
    'irrelavent_infos': 'blabla',
}
ex3 = {
    'question': '1+1=?',
    'answer': '2',  # Assume the answer is in the reader_cfg.output_column
    'irrelavent_infos': 'blabla',
}





Next, let’s take a look at the actual effects of different prompt construction methods:


String-based PromptDialogue-Based Prompt
Template configurations are as follows:

infer_cfg=dict(
    ice_template=dict(
        type=PromptTemplate,
        template='{question}\n{answer}'
    ),
    prompt_template=dict(
        type=PromptTemplate,
        template='Solve the following questions.\n</E>{question}\n{answer}'
        ice_token='</E>',
    )
)





The resulting strings are as follows:

Solve the following questions.
2+2=?
4
3+3=?
6
1+1=?






Template configurations are as follows:

infer_cfg=dict(
    ice_template=dict(
        type=PromptTemplate,
        template=dict(
            round=[
                dict(role="HUMAN", prompt="{question}"),
                dict(role="BOT", prompt="{answer}"),
            ]
        )
    ),
    prompt_template=dict(
        type=PromptTemplate,
        template=dict(
            begin=[
                dict(role='SYSTEM', fallback_role='HUMAN', prompt='Solve the following questions.'),
                '</E>',
            ],
            round=[
                dict(role="HUMAN", prompt="{question}"),
                dict(role="BOT", prompt="{answer}"),
            ],
        ),
        ice_token='</E>',
    )
)





The intermediate results obtained by OpenCompass after filling the data into the templates are as follows:

PromptList([
    dict(role='SYSTEM', fallback_role='HUMAN', prompt='Solve the following questions.'),
    dict(role='HUMAN', prompt='2+2=?'),
    dict(role='BOT', prompt='4'),
    dict(role='HUMAN', prompt='3+3=?'),
    dict(role='BOT', prompt='6'),
    dict(role='HUMAN', prompt='1+1=?'),
    dict(role='BOT', prompt=''),
])









Abbreviated Usage

It is worth noting that, for the sake of simplicity in the configuration file, the prompt_template field can be omitted. When the prompt_template field is omitted, the ice_template will be used as the prompt_template as well, to assemble the complete prompt. The following two infer_cfg configurations are equivalent:


  
  
      	Complete Form
      	Abbreviated Form
  
  
  	
infer_cfg=dict(
    ice_template=dict(
        type=PromptTemplate,
        template="Q: {question}\nA: {answer}",
    ),
    prompt_template=dict(
        type=PromptTemplate,
        template="</E>Q: {question}\nA: {answer}",
        ice_token="</E>",
    ),
    # ...
)






  	
infer_cfg=dict(
    ice_template=dict(
        type=PromptTemplate,
        template="</E>Q: {question}\nA: {answer}",
        ice_token="</E>",
    ),
    # ...
)
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Meta Template


Background

In the Supervised Fine-Tuning (SFT) process of Language Model Learning (LLM), we often inject some predefined strings into the conversation according to actual requirements, in order to prompt the model to output content according to certain guidelines. For example, in some chat model fine-tuning, we may add system-level instructions at the beginning of each dialogue, and establish a format to represent the conversation between the user and the model. In a conversation, the model may expect the text format to be as follows:

Meta instruction: You are now a helpful and harmless AI assistant.
HUMAN: Hi!<eoh>\n
Bot: Hello! How may I assist you?<eob>\n





During evaluation, we also need to enter questions according to the agreed format for the model to perform its best.

In addition, similar situations exist in API models. General API dialogue models allow users to pass in historical dialogues when calling, and some models also allow the input of SYSTEM level instructions. To better evaluate the ability of API models, we hope to make the data as close as possible to the multi-round dialogue template of the API model itself during the evaluation, rather than stuffing all the content into an instruction.

Therefore, we need to specify different parsing templates for different models. In OpenCompass, we call this set of parsing templates Meta Template. Meta Template is tied to the model’s configuration and is combined with the dialogue template of the dataset during runtime to ultimately generate the most suitable prompt for the current model.

# When specifying, just pass the meta_template field into the model
models = [
    dict(
        type='AnyModel',
        meta_template = ...,  # meta template
    )
]





Next, we will introduce how to configure Meta Template on two types of models.
You are recommended to read here for the basic syntax of the dialogue template before reading this chapter.


Note

In some cases (such as testing the base station), we don’t need to inject any instructions into the normal dialogue, in which case we can leave the meta template empty. In this case, the prompt received by the model is defined only by the dataset configuration and is a regular string. If the dataset configuration uses a dialogue template, speeches from different roles will be concatenated with \n.





Application on Language Models

The following figure shows several situations where the data is built into a prompt through the prompt template and meta template from the dataset in the case of 2-shot learning. Readers can use this figure as a reference to help understand the following sections.

[image: ]

We will explain how to define the meta template with several examples.

Suppose that according to the dialogue template of the dataset, the following dialogue was produced:

PromptList([
    dict(role='HUMAN', prompt='1+1=?'),
    dict(role='BOT', prompt='2'),
    dict(role='HUMAN', prompt='2+2=?'),
    dict(role='BOT', prompt='4'),
])





We want to pass this dialogue to a model that has already gone through SFT. The model’s agreed dialogue begins with the speech of different roles with <Role Name>: and ends with a special token and \n. Here is the complete string the model expects to receive:

<HUMAN>: 1+1=?<eoh>
<BOT>: 2<eob>
<HUMAN>: 2+2=?<eoh>
<BOT>: 4<eob>





In the meta template, we only need to abstract the format of each round of dialogue into the following configuration:

# model meta template
meta_template = dict(
    round=[
          dict(role='HUMAN', begin='<HUMAN>: ', end='<eoh>\n'),
          dict(role='BOT', begin='<BOT>: ', end='<eob>\n'),
    ],
 )







Some datasets may introduce SYSTEM-level roles:

PromptList([
    dict(role='SYSTEM', fallback_role='HUMAN', prompt='Solve the following math questions'),
    dict(role='HUMAN', prompt='1+1=?'),
    dict(role='BOT', prompt='2'),
    dict(role='HUMAN', prompt='2+2=?'),
    dict(role='BOT', prompt='4'),
])





Assuming the model also accepts the SYSTEM role, and expects the input to be:

<SYSTEM>: Solve the following math questions<eosys>\n
<HUMAN>: 1+1=?<eoh>\n
<BOT>: 2<eob>\n
<HUMAN>: 2+2=?<eoh>\n
<BOT>: 4<eob>\n
end of conversation





We can put the definition of the SYSTEM role into reserved_roles. Roles in reserved_roles will not appear in regular conversations, but they allow the dialogue template of the dataset configuration to call them in begin or end.

# model meta template
meta_template = dict(
    round=[
          dict(role='HUMAN', begin='<HUMAN>: ', end='<eoh>\n'),
          dict(role='BOT', begin='<BOT>: ', end='<eob>\n'),
    ],
    reserved_roles=[dict(role='SYSTEM', begin='<SYSTEM>: ', end='<eosys>\n'),],
 ),





If the model does not accept the SYSTEM role, it is not necessary to configure this item, and it can still run normally. In this case, the string received by the model becomes:

<HUMAN>: Solve the following math questions<eoh>\n
<HUMAN>: 1+1=?<eoh>\n
<BOT>: 2<eob>\n
<HUMAN>: 2+2=?<eoh>\n
<BOT>: 4<eob>\n
end of conversation





This is because in the predefined datasets in OpenCompass, each SYSTEM speech has a fallback_role='HUMAN', that is, if the SYSTEM role in the meta template does not exist, the speaker will be switched to the HUMAN role.



Some models may need to consider embedding other strings at the beginning or end of the conversation, such as system instructions:

Meta instruction: You are now a helpful and harmless AI assistant.
<SYSTEM>: Solve the following math questions<eosys>\n
<HUMAN>: 1+1=?<eoh>\n
<BOT>: 2<eob>\n
<HUMAN>: 2+2=?<eoh>\n
<BOT>: 4<eob>\n
end of conversation





In this case, we can specify these strings by specifying the begin and end parameters.

meta_template = dict(
    round=[
          dict(role='HUMAN', begin='<HUMAN>: ', end='<eoh>\n'),
          dict(role='BOT', begin='<BOT>: ', end='<eob>\n'),
    ],
    reserved_roles=[dict(role='SYSTEM', begin='<SYSTEM>: ', end='<eosys>\n'),],
    begin="Meta instruction: You are now a helpful and harmless AI assistant.",
    end="end of conversation",
 ),







In generative task evaluation, we will not directly input the answer to the model, but by truncating the prompt, while retaining the previous text, we leave the answer output by the model blank.

Meta instruction: You are now a helpful and harmless AI assistant.
<SYSTEM>: Solve the following math questions<eosys>\n
<HUMAN>: 1+1=?<eoh>\n
<BOT>: 2<eob>\n
<HUMAN>: 2+2=?<eoh>\n
<BOT>:





We only need to set the generate field in BOT’s configuration to True, and OpenCompass will automatically leave the last utterance of BOT blank:

# model meta template
meta_template = dict(
    round=[
          dict(role='HUMAN', begin='<HUMAN>: ', end='<eoh>\n'),
          dict(role='BOT', begin='<BOT>: ', end='<eob>\n', generate=True),
    ],
    reserved_roles=[dict(role='SYSTEM', begin='<SYSTEM>: ', end='<eosys>\n'),],
    begin="Meta instruction: You are now a helpful and harmless AI assistant.",
    end="end of conversation",
 ),





Note that generate only affects generative inference. When performing discriminative inference, the prompt received by the model is still complete.


Full Definition

models = [
    dict(meta_template = dict(
            begin="Meta instruction: You are now a helpful and harmless AI assistant.",
            round=[
                    dict(role='HUMAN', begin='HUMAN: ', end='<eoh>\n'),  # begin and end can be a list of strings or integers.
                    dict(role='THOUGHTS', begin='THOUGHTS: ', end='<eot>\n', prompt='None'), # Here we can set the default prompt, which may be overridden by the specific dataset
                    dict(role='BOT', begin='BOT: ', generate=True, end='<eob>\n'),
            ],
            end="end of conversion",
            reserved_roles=[dict(role='SYSTEM', begin='SYSTEM: ', end='\n'),],
            eos_token_id=10000,
         ),
     )
]





The meta_template is a dictionary that can contain the following fields:


	begin, end: (str, optional) The beginning and ending of the prompt, typically some system-level instructions.


	round: (list) The template format of each round of dialogue. The content of the prompt for each round of dialogue is controlled by the dialogue template configured in the dataset.


	reserved_roles: (list, optional) Specify roles that do not appear in round but may be used in the dataset configuration, such as the SYSTEM role.


	eos_token_id: (int, optional): Specifies the ID of the model’s eos token. If not set, it defaults to the eos token id in the tokenizer. Its main role is to trim the output of the model in generative tasks, so it should generally be set to the first token id of the end corresponding to the item with generate=True.




The round of the meta_template specifies the format of each role’s speech in a round of dialogue. It accepts a list of dictionaries, each dictionary’s keys are as follows:


	role (str): The name of the role participating in the dialogue. This string does not affect the actual prompt.


	begin, end (str): Specifies the fixed beginning or end when this role speaks.


	prompt (str): The role’s prompt. It is allowed to leave it blank in the meta template, but in this case, it must be specified in the prompt of the dataset configuration.


	generate (bool): When specified as True, this role is the one the model plays. In generation tasks, the prompt received by the model will be cut off at the begin of this role, and the remaining content will be filled by the model.







Application to API Models

The meta template of the API model is similar to the meta template of the general model, but the configuration is simpler. Users can, as per their requirements, directly use one of the two configurations below to evaluate the API model in a multi-turn dialogue manner:

# If the API model does not support system instructions
meta_template=dict(
    round=[
        dict(role='HUMAN', api_role='HUMAN'),
        dict(role='BOT', api_role='BOT', generate=True)
    ],
)

# If the API model supports system instructions
meta_template=dict(
    round=[
        dict(role='HUMAN', api_role='HUMAN'),
        dict(role='BOT', api_role='BOT', generate=True)
    ],
    reserved_roles=[
        dict(role='SYSTEM', api_role='SYSTEM'),
    ],
)






Principle

Even though different API models accept different data structures, there are commonalities overall. Interfaces that accept dialogue history generally allow users to pass in prompts from the following three roles:


	User


	Robot


	System (optional)




In this regard, OpenCompass has preset three api_role values for API models: HUMAN, BOT, SYSTEM, and stipulates that in addition to regular strings, the input accepted by API models includes a middle format of dialogue represented by PromptList. The API model will repackage the dialogue in a multi-turn dialogue format and send it to the backend. However, to activate this feature, users need to map the roles role in the dataset prompt template to the corresponding api_role in the above meta template. The following figure illustrates the relationship between the input accepted by the API model and the Prompt Template and Meta Template.

[image: ]




Debugging

If you need to debug the prompt, it is recommended to use the tools/prompt_viewer.py script to preview the actual prompt received by the model after preparing the configuration file. Read here for more.
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Chain of Thought


Background

During the process of reasoning, CoT (Chain of Thought) method is an efficient way to help LLMs deal complex questions, for example: math problem and relation inference. In OpenCompass, we support multiple types of CoT method.

[image: image]



1. Zero Shot CoT

You can change the PromptTemplate of the dataset config, by simply add Let’s think step by step to realize a Zero-Shot CoT prompt for your evaluation:

qa_infer_cfg = dict(
    prompt_template=dict(
        type=PromptTemplate,
        template="Answer the question:\nQ: {question}?\nLet's think step by step:\n"
    ),
    retriever=dict(type=ZeroRetriever)
)







2. Few Shot CoT

Few-shot CoT can make LLMs easy to follow your instructions and get better answers. For few-shot CoT, add your CoT template to PromptTemplate like following config to create a one-shot prompt:

qa_infer_cfg = dict(
    prompt_template=dict(
        type=PromptTemplate,
        template=
'''Question: Mark's basketball team scores 25 2 pointers, 8 3 pointers and 10 free throws.  Their opponents score double the 2 pointers but half the 3 pointers and free throws.  What's the total number of points scored by both teams added together?
Let's think step by step
Answer:
Mark's team scores 25 2 pointers, meaning they scored 25*2= 50 points in 2 pointers.
His team also scores 6 3 pointers, meaning they scored 8*3= 24 points in 3 pointers
They scored 10 free throws, and free throws count as one point so they scored 10*1=10 points in free throws.
All together his team scored 50+24+10= 84 points
Mark's opponents scored double his team's number of 2 pointers, meaning they scored 50*2=100 points in 2 pointers.
His opponents scored half his team's number of 3 pointers, meaning they scored 24/2= 12 points in 3 pointers.
They also scored half Mark's team's points in free throws, meaning they scored 10/2=5 points in free throws.
All together Mark's opponents scored 100+12+5=117 points
The total score for the game is both team's scores added together, so it is 84+117=201 points
The answer is 201

Question: {question}\nLet's think step by step:\n{answer}
'''),
    retriever=dict(type=ZeroRetriever)
)







3. Self-Consistency

The SC (Self-Consistency) method is proposed in this paper [https://arxiv.org/abs/2203.11171], which will sample multiple reasoning paths for the question, and make majority voting to the generated answers for LLMs. This method displays remarkable proficiency among reasoning tasks with high accuracy but may consume more time and resources when inferencing, because of the majority voting strategy. In OpenCompass, You can easily implement the SC method by replacing GenInferencer with SCInferencer in the dataset configuration and setting the corresponding parameters like:

# This SC gsm8k config can be found at: opencompass.configs.datasets.gsm8k.gsm8k_gen_a3e34a.py
gsm8k_infer_cfg = dict(
    inferencer=dict(
        type=SCInferencer, # Replace GenInferencer with SCInferencer.
        generation_kwargs=dict(do_sample=True, temperature=0.7, top_k=40),  # Set sample parameters to make sure model generate various output, only works for models load from HuggingFace now.
        infer_type='SC',
        sc_size = SAMPLE_SIZE
    )
)
gsm8k_eval_cfg = dict(sc_size=SAMPLE_SIZE)






Note

OpenCompass defaults to use argmax for sampling the next token. Therefore, if the sampling parameters are not specified, the model’s inference results will be completely consistent each time, and multiple rounds of evaluation will be ineffective.



Where SAMPLE_SIZE is the number of reasoning paths in Self-Consistency, higher value usually outcome higher performance. The following figure from the original SC paper demonstrates the relation between reasoning paths and performance in several reasoning tasks:

[image: image]

From the figure, it can be seen that in different reasoning tasks, performance tends to improve as the number of reasoning paths increases. However, for some tasks, increasing the number of reasoning paths may reach a limit, and further increasing the number of paths may not bring significant performance improvement. Therefore, it is necessary to conduct experiments and adjustments on specific tasks to find the optimal number of reasoning paths that best suit the task.



4. Tree-of-Thoughts

In contrast to the conventional CoT approach that considers only a single reasoning path, Tree-of-Thoughts (ToT) allows the language model to explore multiple diverse reasoning paths simultaneously. The model evaluates the reasoning process through self-assessment and makes global choices by conducting lookahead or backtracking when necessary. Specifically, this process is divided into the following four stages:

1. Thought Decomposition

Based on the nature of the problem, break down the problem into multiple intermediate steps. Each step can be a phrase, equation, or writing plan, depending on the nature of the problem.

2. Thought Generation

Assuming that solving the problem requires k steps, there are two methods to generate reasoning content:


	Independent sampling: For each state, the model independently extracts k reasoning contents from the CoT prompts, without relying on other reasoning contents.


	Sequential generation: Sequentially use “prompts” to guide the generation of reasoning content, where each reasoning content may depend on the previous one.




3. Heuristic Evaluation

Use heuristic methods to evaluate the contribution of each generated reasoning content to problem-solving. This self-evaluation is based on the model’s self-feedback and involves designing prompts to have the model score multiple generated results.

4. Search Algorithm Selection

Based on the methods of generating and evaluating reasoning content, select an appropriate search algorithm. For example, you can use breadth-first search (BFS) or depth-first search (DFS) algorithms to systematically explore the thought tree, conducting lookahead and backtracking.

In OpenCompass, ToT parameters need to be set according to the requirements. Below is an example configuration for the 24-Point game from the official paper [https://arxiv.org/pdf/2305.10601.pdf]. Currently, ToT inference is supported only with Huggingface models:

# This ToT Game24 config can be found at: opencompass/configs/datasets/game24/game24_gen_8dfde3.py.
from opencompass.datasets import (Game24Dataset, game24_postprocess,
                                  Game24Evaluator, Game24PromptWrapper)

generation_kwargs = dict(temperature=0.7)

game24_infer_cfg = dict(
        prompt_template=dict(
        type=PromptTemplate,
        template='{input}'), # Directly pass the input content, as the Prompt needs to be specified in steps
    retriever=dict(type=ZeroRetriever),
    inferencer=dict(type=ToTInferencer, # Replace GenInferencer with ToTInferencer
                    generation_kwargs=generation_kwargs,
                    method_generate='propose',  # Method for generating reasoning content, can be independent sampling (sample) or sequential generation (propose)
                    method_evaluate='value', # Method for evaluating reasoning content, can be voting (vote) or scoring (value)
                    method_select='greedy', # Method for selecting reasoning content, can be greedy (greedy) or random (sample)
                    n_evaluate_sample=3,
                    n_select_sample=5,
                    task_wrapper=dict(type=Game24PromptWrapper) # This Wrapper class includes the prompts for each step and methods for generating and evaluating reasoning content, needs customization according to the task
                    ))





If you want to use the ToT method on a custom dataset, you’ll need to make additional configurations in the opencompass.datasets.YourDataConfig.py file to set up the YourDataPromptWrapper class. This is required for handling the thought generation and heuristic evaluation step within the ToT framework. For reasoning tasks similar to the game 24-Point, you can refer to the implementation in opencompass/datasets/game24.py for guidance.
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Add a dataset

Although OpenCompass has already included most commonly used datasets, users need to follow the steps below to support a new dataset if wanted:


	Add a dataset script mydataset.py to the opencompass/datasets folder. This script should include:


	The dataset and its loading method. Define a MyDataset class that implements the data loading method load as a static method. This method should return data of type datasets.Dataset. We use the Hugging Face dataset as the unified interface for datasets to avoid introducing additional logic. Here’s an example:




import datasets
from .base import BaseDataset

class MyDataset(BaseDataset):

    @staticmethod
    def load(**kwargs) -> datasets.Dataset:
        pass






	(Optional) If the existing evaluators in OpenCompass do not meet your needs, you need to define a MyDatasetEvaluator class that implements the scoring method score. This method should take predictions and references as input and return the desired dictionary. Since a dataset may have multiple metrics, the method should return a dictionary containing the metrics and their corresponding scores. Here’s an example:




from opencompass.openicl.icl_evaluator import BaseEvaluator

class MyDatasetEvaluator(BaseEvaluator):

    def score(self, predictions: List, references: List) -> dict:
        pass






	(Optional) If the existing postprocessors in OpenCompass do not meet your needs, you need to define the mydataset_postprocess method. This method takes an input string and returns the corresponding postprocessed result string. Here’s an example:




def mydataset_postprocess(text: str) -> str:
    pass







	After defining the dataset loading, data postprocessing, and evaluator methods, you need to add the following configurations to the configuration file:

from opencompass.datasets import MyDataset, MyDatasetEvaluator, mydataset_postprocess

mydataset_eval_cfg = dict(
    evaluator=dict(type=MyDatasetEvaluator),
    pred_postprocessor=dict(type=mydataset_postprocess))

mydataset_datasets = [
    dict(
        type=MyDataset,
        ...,
        reader_cfg=...,
        infer_cfg=...,
        eval_cfg=mydataset_eval_cfg)
]





Detailed dataset configuration files and other required configuration files can be referred to in the Configuration Files tutorial. For guides on launching tasks, please refer to the Quick Start tutorial.
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Custom Dataset Tutorial

This tutorial is intended for temporary and informal use of datasets. If the dataset requires long-term use or has specific needs for custom reading/inference/evaluation, it is strongly recommended to implement it according to the methods described in new_dataset.md.

In this tutorial, we will introduce how to test a new dataset without implementing a config or modifying the OpenCompass source code. We support two types of tasks: multiple choice (mcq) and question & answer (qa). For mcq, both ppl and gen inferences are supported; for qa, gen inference is supported.


Dataset Format

We support datasets in both .jsonl and .csv formats.


Multiple Choice (mcq)

For mcq datasets, the default fields are as follows:


	question: The stem of the multiple-choice question.


	A, B, C, …: Single uppercase letters representing the options, with no limit on the number. Defaults to parsing consecutive letters strating from A as options.


	answer: The correct answer to the multiple-choice question, which must be one of the options used above, such as A, B, C, etc.




Non-default fields will be read in but are not used by default. To use them, specify in the .meta.json file.

An example of the .jsonl format:

{"question": "165+833+650+615=", "A": "2258", "B": "2263", "C": "2281", "answer": "B"}
{"question": "368+959+918+653+978=", "A": "3876", "B": "3878", "C": "3880", "answer": "A"}
{"question": "776+208+589+882+571+996+515+726=", "A": "5213", "B": "5263", "C": "5383", "answer": "B"}
{"question": "803+862+815+100+409+758+262+169=", "A": "4098", "B": "4128", "C": "4178", "answer": "C"}





An example of the .csv format:

question,A,B,C,answer
127+545+588+620+556+199=,2632,2635,2645,B
735+603+102+335+605=,2376,2380,2410,B
506+346+920+451+910+142+659+850=,4766,4774,4784,C
504+811+870+445=,2615,2630,2750,B







Question & Answer (qa)

For qa datasets, the default fields are as follows:


	question: The stem of the question & answer question.


	answer: The correct answer to the question & answer question. It can be missing, indicating the dataset has no correct answer.




Non-default fields will be read in but are not used by default. To use them, specify in the .meta.json file.

An example of the .jsonl format:

{"question": "752+361+181+933+235+986=", "answer": "3448"}
{"question": "712+165+223+711=", "answer": "1811"}
{"question": "921+975+888+539=", "answer": "3323"}
{"question": "752+321+388+643+568+982+468+397=", "answer": "4519"}





An example of the .csv format:

question,answer
123+147+874+850+915+163+291+604=,3967
149+646+241+898+822+386=,3142
332+424+582+962+735+798+653+214=,4700
649+215+412+495+220+738+989+452=,4170








Command Line List

Custom datasets can be directly called for evaluation through the command line.

python run.py \
    --models hf_llama2_7b \
    --custom-dataset-path xxx/test_mcq.csv \
    --custom-dataset-data-type mcq \
    --custom-dataset-infer-method ppl





python run.py \
    --models hf_llama2_7b \
    --custom-dataset-path xxx/test_qa.jsonl \
    --custom-dataset-data-type qa \
    --custom-dataset-infer-method gen





In most cases, --custom-dataset-data-type and --custom-dataset-infer-method can be omitted. OpenCompass will

set them based on the following logic:


	If options like A, B, C, etc., can be parsed from the dataset file, it is considered an mcq dataset; otherwise, it is considered a qa dataset.


	The default infer_method is gen.






Configuration File

In the original configuration file, simply add a new item to the datasets variable. Custom datasets can be mixed with regular datasets.

datasets = [
    {"path": "xxx/test_mcq.csv", "data_type": "mcq", "infer_method": "ppl"},
    {"path": "xxx/test_qa.jsonl", "data_type": "qa", "infer_method": "gen"},
]







Supplemental Information for Dataset .meta.json

OpenCompass will try to parse the input dataset file by default, so in most cases, the .meta.json file is not necessary. However, if the dataset field names are not the default ones, or custom prompt words are required, it should be specified in the .meta.json file.

The file is placed in the same directory as the dataset, with the filename followed by .meta.json. An example file structure is as follows:

.
├── test_mcq.csv
├── test_mcq.csv.meta.json
├── test_qa.jsonl
└── test_qa.jsonl.meta.json





Possible fields in this file include:


	abbr (str): Abbreviation of the dataset, serving as its ID.


	data_type (str): Type of dataset, options are mcq and qa.


	infer_method (str): Inference method, options are ppl and gen.


	human_prompt (str): User prompt template for generating prompts. Variables in the template are enclosed in {}, like {question}, {opt1}, etc. If template exists, this field will be ignored.


	bot_prompt (str): Bot prompt template for generating prompts. Variables in the template are enclosed in {}, like {answer}, etc. If template exists, this field will be ignored.


	template (str or dict): Question template for generating prompts. Variables in the template are enclosed in {}, like {question}, {opt1}, etc. The relevant syntax is in here regarding infer_cfg['prompt_template']['template'].


	input_columns (list): List of input fields for reading data.


	output_column (str): Output field for reading data.


	options (list): List of options for reading data, valid only when data_type is mcq.




For example:

{
    "human_prompt": "Question: 127 + 545 + 588 + 620 + 556 + 199 =\nA. 2632\nB. 2635\nC. 2645\nAnswer: Let's think step by step, 127 + 545 + 588 + 620 + 556 + 199 = 672 + 588 + 620 + 556 + 199 = 1260 + 620 + 556 + 199 = 1880 + 556 + 199 = 2436 + 199 = 2635. So the answer is B.\nQuestion: {question}\nA. {A}\nB. {B}\nC. {C}\nAnswer: ",
    "bot_prompt": "{answer}"
}





or

{
    "template": "Question: {my_question}\nX. {X}\nY. {Y}\nZ. {Z}\nW. {W}\nAnswer:",
    "input_columns": ["my_question", "X", "Y", "Z", "W"],
    "output_column": "my_answer",
}
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Add a Model

Currently, we support HF models, some model APIs, and some third-party models.


Adding API Models

To add a new API-based model, you need to create a new file named mymodel_api.py under opencompass/models directory. In this file, you should inherit from BaseAPIModel and implement the generate method for inference and the get_token_len method to calculate the length of tokens. Once you have defined the model, you can modify the corresponding configuration file.

from ..base_api import BaseAPIModel

class MyModelAPI(BaseAPIModel):

    is_api: bool = True

    def __init__(self,
                 path: str,
                 max_seq_len: int = 2048,
                 query_per_second: int = 1,
                 retry: int = 2,
                 **kwargs):
        super().__init__(path=path,
                         max_seq_len=max_seq_len,
                         meta_template=meta_template,
                         query_per_second=query_per_second,
                         retry=retry)
        ...

    def generate(
        self,
        inputs,
        max_out_len: int = 512,
        temperature: float = 0.7,
    ) -> List[str]:
        """Generate results given a list of inputs."""
        pass

    def get_token_len(self, prompt: str) -> int:
        """Get lengths of the tokenized string."""
        pass







Adding Third-Party Models

To add a new third-party model, you need to create a new file named mymodel.py under opencompass/models directory. In this file, you should inherit from BaseModel and implement the generate method for generative inference, the get_ppl method for discriminative inference, and the get_token_len method to calculate the length of tokens. Once you have defined the model, you can modify the corresponding configuration file.

from ..base import BaseModel

class MyModel(BaseModel):

    def __init__(self,
                 pkg_root: str,
                 ckpt_path: str,
                 tokenizer_only: bool = False,
                 meta_template: Optional[Dict] = None,
                 **kwargs):
        ...

    def get_token_len(self, prompt: str) -> int:
        """Get lengths of the tokenized strings."""
        pass

    def generate(self, inputs: List[str], max_out_len: int) -> List[str]:
        """Generate results given a list of inputs. """
        pass

    def get_ppl(self,
                inputs: List[str],
                mask_length: Optional[List[int]] = None) -> List[float]:
        """Get perplexity scores given a list of inputs."""
        pass
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Evaluation with LMDeploy

We now support evaluation of models accelerated by the LMDeploy [https://github.com/InternLM/lmdeploy]. LMDeploy is a toolkit designed for compressing, deploying, and serving LLM. TurboMind is an efficient inference engine proposed by LMDeploy. OpenCompass is compatible with TurboMind. We now illustrate how to evaluate a model with the support of TurboMind in OpenCompass.


Setup


Install OpenCompass

Please follow the instructions [https://opencompass.readthedocs.io/en/latest/get_started/installation.html] to install the OpenCompass and prepare the evaluation datasets.



Install LMDeploy

Install lmdeploy via pip (python 3.8+)

pip install lmdeploy








Evaluation

OpenCompass integrates turbomind’s python API for evaluation.

We take the InternLM-20B as example. Firstly, we prepare the evaluation config configs/eval_internlm_turbomind.py:

from mmengine.config import read_base
from opencompass.models.turbomind import TurboMindModel


with read_base():
    # choose a list of datasets
    from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
    from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
    from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets
    from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
    from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
    from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets
    # and output the results in a chosen format
    from .summarizers.medium import summarizer

datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])

# config for internlm-20b model
internlm_20b = dict(
        type=TurboMindModel,
        abbr='internlm-20b-turbomind',
        path="internlm/internlm-20b",  # this path should be same as in huggingface
        engine_config=dict(session_len=2048,
                           max_batch_size=8,
                           rope_scaling_factor=1.0),
        gen_config=dict(top_k=1, top_p=0.8,
                        temperature=1.0,
                        max_new_tokens=100),
        max_out_len=100,
        max_seq_len=2048,
        batch_size=8,
        concurrency=8,
        run_cfg=dict(num_gpus=1, num_procs=1),
        end_str='<eoa>'
    )

models = [internlm_20b]





Then, in the home folder of OpenCompass, start evaluation by the following command:

python run.py configs/eval_internlm_turbomind.py -w outputs/turbomind/internlm-20b





You are expected to get the evaluation results after the inference and evaluation.

Note:


	If you want to pass more arguments for engine_config和gen_config in the evaluation config file, please refer to TurbomindEngineConfig [https://lmdeploy.readthedocs.io/en/latest/inference/pipeline.html#turbomindengineconfig]
and EngineGenerationConfig [https://lmdeploy.readthedocs.io/en/latest/inference/pipeline.html#generationconfig]


	If you evaluate the InternLM Chat model, please use configuration file eval_internlm_chat_turbomind.py


	If you evaluate the InternLM 7B model, please modify eval_internlm_turbomind.py or eval_internlm_chat_turbomind.py by changing to the setting models = [internlm_7b] in the last line.
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Evaluation with Lightllm

We now support the evaluation of large language models using Lightllm [https://github.com/ModelTC/lightllm] for inference. Developed by SenseTime, LightLLM is a Python-based LLM (Large Language Model) inference and serving framework, notable for its lightweight design, easy scalability, and high-speed performance. Lightllm provides support for various large Language models, allowing users to perform model inference through Lightllm, locally deploying it as a service. During the evaluation process, OpenCompass feeds data to Lightllm through an API and processes the response. OpenCompass has been adapted for compatibility with Lightllm, and this tutorial will guide you on using OpenCompass to evaluate models with Lightllm as the inference backend.


Setup


Install OpenCompass

Please follow the instructions [https://opencompass.readthedocs.io/en/latest/get_started/installation.html] to install the OpenCompass and prepare the evaluation datasets.



Install Lightllm

Please follow the Lightllm homepage [https://github.com/ModelTC/lightllm] to install the Lightllm. Pay attention to aligning the versions of relevant dependencies, especially the version of the Transformers.




Evaluation

We use the evaluation of Humaneval with the llama2-7B model as an example.


Step-1: Deploy the model locally as a service using Lightllm.

python -m lightllm.server.api_server --model_dir /path/llama2-7B    \
                                     --host 0.0.0.0                 \
                                     --port 1030                    \
                                     --nccl_port 2066               \
                                     --max_req_input_len 4096       \
                                     --max_req_total_len 6144       \
                                     --tp 1                         \
                                     --trust_remote_code            \
                                     --max_total_token_num 120000





**Note: ** tp can be configured to enable TensorParallel inference on several gpus, suitable for the inference of very large models.

**Note: ** The max_total_token_num in the above command will affect the throughput performance during testing. It can be configured according to the documentation on the Lightllm homepage [https://github.com/ModelTC/lightllm]. As long as it does not run out of memory, it is often better to set it as high as possible.

**Note: ** If you want to start multiple LightLLM services on the same machine, you need to reconfigure the above port and nccl_port.

You can use the following Python script to quickly test whether the current service has been successfully started.

import time
import requests
import json

url = 'http://localhost:8080/generate'
headers = {'Content-Type': 'application/json'}
data = {
    'inputs': 'What is AI?',
    "parameters": {
        'do_sample': False,
        'ignore_eos': False,
        'max_new_tokens': 1024,
    }
}
response = requests.post(url, headers=headers, data=json.dumps(data))
if response.status_code == 200:
    print(response.json())
else:
    print('Error:', response.status_code, response.text)







Step-2: Evaluate the above model using OpenCompass.

python run.py configs/eval_lightllm.py





You are expected to get the evaluation results after the inference and evaluation.

**Note: **In eval_lightllm.py, please align the configured URL with the service address from the previous step.
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Code Evaluation Tutorial

This tutorial primarily focuses on evaluating a model’s coding proficiency, using humaneval and mbpp as examples.


pass@1

If you only need to generate a single response to evaluate the pass@1 performance, you can directly use configs/datasets/humaneval/humaneval_gen_8e312c.py [https://github.com/open-compass/opencompass/blob/main/configs/datasets/humaneval/humaneval_gen_8e312c.py] and configs/datasets/mbpp/deprecated_mbpp_gen_1e1056.py [https://github.com/open-compass/opencompass/blob/main/configs/datasets/mbpp/deprecated_mbpp_gen_1e1056.py], referring to the general quick start tutorial.

For multilingual evaluation, please refer to the Multilingual Code Evaluation Tutorial.



pass@k

If you need to generate multiple responses for a single example to evaluate the pass@k performance, consider the following two situations. Here we take 10 responses as an example:


Typical Situation

For most models that support the num_return_sequences parameter in HF’s generation, we can use it directly to obtain multiple responses. Refer to the following configuration file:

from opencompass.datasets import MBPPDataset_V2, MBPPPassKEvaluator

with read_base():
    from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets
    from .datasets.mbpp.deprecated_mbpp_gen_1e1056 import mbpp_datasets

mbpp_datasets[0]['type'] = MBPPDataset_V2
mbpp_datasets[0]['eval_cfg']['evaluator']['type'] = MBPPPassKEvaluator
mbpp_datasets[0]['reader_cfg']['output_column'] = 'test_column'

datasets = []
datasets += humaneval_datasets
datasets += mbpp_datasets

models = [
    dict(
        type=HuggingFaceCausalLM,
        ...,
        generation_kwargs=dict(
            num_return_sequences=10,
            do_sample=True,
            top_p=0.95,
            temperature=0.8,
        ),
        ...,
    )
]





For mbpp, new changes are needed in the dataset and evaluation, so we simultaneously modify the type, eval_cfg.evaluator.type, reader_cfg.output_column fields to accommodate these requirements.

We also need model responses with randomness, thus setting the generation_kwargs parameter is necessary. Note that we need to set num_return_sequences to get the number of responses.

Note: num_return_sequences must be greater than or equal to k, as pass@k itself is a probability estimate.

You can specifically refer to the following configuration file configs/eval_code_passk.py [https://github.com/open-compass/opencompass/blob/main/configs/eval_code_passk.py]



For Models That Do Not Support Multiple Responses

This applies to some HF models with poorly designed APIs or missing features. In this case, we need to repeatedly construct datasets to achieve multiple response effects. Refer to the following configuration:

from opencompass.datasets import MBPPDataset_V2, MBPPPassKEvaluator

with read_base():
    from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets
    from .datasets.mbpp.deprecated_mbpp_gen_1e1056 import mbpp_datasets

humaneval_datasets[0]['abbr'] = 'openai_humaneval_pass10'
humaneval_datasets[0]['num_repeats'] = 10
mbpp_datasets[0]['abbr'] = 'mbpp_pass10'
mbpp_datasets[0]['num_repeats'] = 10
mbpp_datasets[0]['type'] = MBPPDataset_V2
mbpp_datasets[0]['eval_cfg']['evaluator']['type'] = MBPPPassKEvaluator
mbpp_datasets[0]['reader_cfg']['output_column'] = 'test_column'

datasets = []
datasets += humaneval_datasets
datasets += mbpp_datasets

models = [
    dict(
        type=HuggingFaceCausalLM,
        ...,
        generation_kwargs=dict(
            do_sample=True,
            top_p=0.95,
            temperature=0.8,
        ),
        ...,
    )
]





Since the dataset’s prompt has not been modified, we need to replace the corresponding fields to achieve the purpose of repeating the dataset.
You need to modify these fields:


	num_repeats: the number of times the dataset is repeated


	abbr: It’s best to modify the dataset abbreviation along with the number of repetitions because the number of datasets will change, preventing potential issues arising from discrepancies with the values in .cache/dataset_size.json.




For mbpp, modify the type, eval_cfg.evaluator.type, reader_cfg.output_column fields as well.

We also need model responses with randomness, thus setting the generation_kwargs parameter is necessary.

You can specifically refer to the following configuration file configs/eval_code_passk_repeat_dataset.py [https://github.com/open-compass/opencompass/blob/main/configs/eval_code_passk_repeat_dataset.py]
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Code Evaluation Docker Tutorial

To complete the LLM code capability evaluation, we need to build a separate evaluation environment to avoid executing erroneous code in the development environment, which would inevitably cause losses. The code evaluation service currently used by OpenCompass can refer to the code-evaluator [https://github.com/open-compass/code-evaluator] project. The following will introduce evaluation tutorials around the code evaluation service.


	humaneval-x




This is a multi-programming language dataset humaneval-x [https://huggingface.co/datasets/THUDM/humaneval-x].
You can download the dataset from this download link [https://github.com/THUDM/CodeGeeX2/tree/main/benchmark/humanevalx]. Please download the language file (××.jsonl.gz) that needs to be evaluated and place it in the ./data/humanevalx folder.

The currently supported languages are python, cpp, go, java, js.


	DS1000




This is a Python multi-algorithm library dataset ds1000 [https://github.com/xlang-ai/DS-1000].
You can download the dataset from this download link [https://github.com/xlang-ai/DS-1000/blob/main/ds1000_data.zip].

The currently supported algorithm libraries are Pandas, Numpy, Tensorflow, Scipy, Sklearn, Pytorch, Matplotlib.


Launching the Code Evaluation Service


	Ensure you have installed Docker, please refer to Docker installation document [https://docs.docker.com/engine/install/].


	Pull the source code of the code evaluation service project and build the Docker image.




Choose the dockerfile corresponding to the dataset you need, and replace humanevalx or ds1000 in the command below.

git clone https://github.com/open-compass/code-evaluator.git
docker build -t code-eval-{your-dataset}:latest -f docker/{your-dataset}/Dockerfile .






	Create a container with the following commands:




# Log output format
docker run -it -p 5000:5000 code-eval-{your-dataset}:latest python server.py

# Run the program in the background
# docker run -itd -p 5000:5000 code-eval-{your-dataset}:latest python server.py

# Using different ports
# docker run -itd -p 5001:5001 code-eval-{your-dataset}:latest python server.py --port 5001





Note:


	If you encounter a timeout during the evaluation of Go, please use the following command when creating the container.




docker run -it -p 5000:5000 -e GO111MODULE=on -e GOPROXY=https://goproxy.io code-eval-{your-dataset}:latest python server.py






	To ensure you have access to the service, use the following command to check the inference environment and evaluation service connection status. (If both inferences and code evaluations run on the same host, skip this step.)




ping your_service_ip_address
telnet your_service_ip_address your_service_port







Local Code Evaluation

When the model inference and code evaluation services are running on the same host or within the same local area network, direct code reasoning and evaluation can be performed. Note: DS1000 is currently not supported, please proceed with remote evaluation.


Configuration File

We provide the configuration file [https://github.com/open-compass/opencompass/blob/main/configs/eval_codegeex2.py] of using humanevalx for evaluation on codegeex2 as reference.

The dataset and related post-processing configurations files can be found at this link [https://github.com/open-compass/opencompass/tree/main/configs/datasets/humanevalx] with attention paid to the evaluator field in the humanevalx_eval_cfg_dict.

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalXDataset, HumanevalXEvaluator

humanevalx_reader_cfg = dict(
    input_columns=['prompt'], output_column='task_id', train_split='test')

humanevalx_infer_cfg = dict(
    prompt_template=dict(
        type=PromptTemplate,
        template='{prompt}'),
    retriever=dict(type=ZeroRetriever),
    inferencer=dict(type=GenInferencer, max_out_len=1024))

humanevalx_eval_cfg_dict = {
    lang : dict(
            evaluator=dict(
                type=HumanevalXEvaluator,
                language=lang,
                ip_address="localhost",    # replace to your code_eval_server ip_address, port
                port=5000),               # refer to https://github.com/open-compass/code-evaluator to launch a server
            pred_role='BOT')
    for lang in ['python', 'cpp', 'go', 'java', 'js']   # do not support rust now
}

humanevalx_datasets = [
    dict(
        type=HumanevalXDataset,
        abbr=f'humanevalx-{lang}',
        language=lang,
        path='./data/humanevalx',
        reader_cfg=humanevalx_reader_cfg,
        infer_cfg=humanevalx_infer_cfg,
        eval_cfg=humanevalx_eval_cfg_dict[lang])
    for lang in ['python', 'cpp', 'go', 'java', 'js']
]







Task Launch

Refer to the Quick Start




Remote Code Evaluation

Model inference and code evaluation services located in different machines which cannot be accessed directly require prior model inference before collecting the code evaluation results. The configuration file and inference process can be reused from the previous tutorial.


Collect Inference Results(Only for Humanevalx)

In OpenCompass’s tools folder, there is a script called collect_code_preds.py provided to process and collect the inference results after providing the task launch configuration file during startup along with specifying the working directory used corresponding to the task.
It is the same with -r option in run.py. More details can be referred through the documentation [https://opencompass.readthedocs.io/en/latest/get_started/quick_start.html#launching-evaluation].

python tools/collect_code_preds.py [config] [-r latest]





The collected results will be organized as following under the -r folder:

workdir/humanevalx
├── codegeex2-6b
│   ├── humanevalx_cpp.json
│   ├── humanevalx_go.json
│   ├── humanevalx_java.json
│   ├── humanevalx_js.json
│   └── humanevalx_python.json
├── CodeLlama-13b
│   ├── ...
├── CodeLlama-13b-Instruct
│   ├── ...
├── CodeLlama-13b-Python
│   ├── ...
├── ...





For DS1000, you just need to obtain the corresponding prediction file generated by opencompass.



Code Evaluation

Make sure your code evaluation service is started, and use curl to request:


The following only supports Humanevalx

curl -X POST -F 'file=@{result_absolute_path}' -F 'dataset={dataset/language}' {your_service_ip_address}:{your_service_port}/evaluate





For example:

curl -X POST -F 'file=@./examples/humanevalx/python.json' -F 'dataset=humanevalx/python' localhost:5000/evaluate





The we have:

"{\"pass@1\": 37.19512195121951%}"





Additionally, we offer an extra option named with_prompt(Defaults to True), since some models(like WizardCoder) generate complete codes without requiring the form of concatenating prompt and prediction. You may refer to the following commands for evaluation.

curl -X POST -F 'file=@./examples/humanevalx/python.json' -F 'dataset=humanevalx/python' -H 'with-prompt: False' localhost:5000/evaluate







The following only supports DS1000

Make sure the code evaluation service is started, then use curl to submit a request:

curl -X POST -F 'file=@./internlm-chat-7b-hf-v11/ds1000_Numpy.json' localhost:5000/evaluate





DS1000 supports additional debug parameters. Be aware that a large amount of log will be generated when it is turned on:


	full: Additional print out of the original prediction for each error sample, post-processing prediction, running program, and final error.


	half: Additional print out of the running program and final error for each error sample.


	error: Additional print out of the final error for each error sample.




curl -X POST -F 'file=@./internlm-chat-7b-hf-v11/ds1000_Numpy.json' -F 'debug=error' localhost:5000/evaluate





You can also modify the num_workers in the same way to control the degree of parallelism.





Advanced Tutorial

Besides evaluating the supported HUMANEVAList data set, users might also need:


Support New Dataset

Please refer to the tutorial on supporting new datasets.



Modify Post-Processing


	For local evaluation, follow the post-processing section in the tutorial on supporting new datasets to modify the post-processing method.


	For remote evaluation, please modify the post-processing part in the tool’s collect_code_preds.py.


	Some parts of post-processing could also be modified in the code evaluation service, more information will be available in the next section.






Debugging Code Evaluation Service

When supporting new datasets or modifying post-processors, it is possible that modifications need to be made to the original code evaluation service. Please make changes based on the following steps:


	Remove the installation of the code-evaluator in Dockerfile, mount the code-evaluator when starting the container instead:




docker run -it -p 5000:5000 -v /local/path/of/code-evaluator:/workspace/code-evaluator code-eval:latest bash






	Install and start the code evaluation service locally. At this point, any necessary modifications can be made to the local copy of the code-evaluator.




cd code-evaluator && pip install -r requirements.txt
python server.py
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Prompt Attack

We support prompt attack following the idea of PromptBench [https://github.com/microsoft/promptbench]. The main purpose here is to evaluate the robustness of prompt instruction, which means when attack/modify the prompt to instruct the task, how well can this task perform as the original task.


Set up environment

Some components are necessary to prompt attack experiment, therefore we need to set up environments.

git clone https://github.com/microsoft/promptbench.git
pip install textattack==0.3.8
export PYTHONPATH=$PYTHONPATH:promptbench/







How to attack


Add a dataset config

We will use GLUE-wnli dataset as example, most configuration settings can refer to config.md for help.

First we need support the basic dataset config, you can find the existing config files in configs or support your own config according to new-dataset

Take the following infer_cfg as example, we need to define the prompt template. adv_prompt is the basic prompt placeholder to be attacked in the experiment. sentence1 and sentence2 are the input columns of this dataset. The attack will only modify the adv_prompt here.

Then, we should use AttackInferencer with original_prompt_list and adv_key to tell the inferencer where to attack and what text to be attacked.

More details can refer to configs/datasets/promptbench/promptbench_wnli_gen_50662f.py config file.

original_prompt_list = [
    'Are the following two sentences entailment or not_entailment? Answer me with "A. entailment" or "B. not_entailment", just one word. ',
    "Does the relationship between the given sentences represent entailment or not_entailment? Respond with 'A. entailment' or 'B. not_entailment'.",
    ...,
]

wnli_infer_cfg = dict(
    prompt_template=dict(
        type=PromptTemplate,
        template=dict(round=[
            dict(
                role="HUMAN",
                prompt="""{adv_prompt}
Sentence 1: {sentence1}
Sentence 2: {sentence2}
Answer:"""),
        ]),
    ),
    retriever=dict(type=ZeroRetriever),
    inferencer=dict(
        type=AttackInferencer,
        original_prompt_list=original_prompt_list,
        adv_key='adv_prompt'))







Add a eval config

We should use OpenICLAttackTask here for attack task. Also NaivePartitioner should be used because the attack experiment will run the whole dataset repeatedly for nearly hurdurds times to search the best attack, we do not want to split the dataset for convenience.

Please choose a small dataset(example < 1000) for attack, due to the aforementioned repeated search, otherwise the time cost is enumerous.





There are several other options in attack config:


	attack: attack type, available options includes textfooler, textbugger, deepwordbug, bertattack, checklist, stresstest;


	query_budget: upper boundary of queries, which means the total numbers of running the dataset;


	prompt_topk: number of topk prompt to be attacked. In most case, the original prompt list is great than 10, running the whole set is time consuming.




# Please run whole dataset at a time, aka use `NaivePartitioner` only
# Please use `OpenICLAttackTask` if want to perform attack experiment
infer = dict(
    partitioner=dict(type=NaivePartitioner),
    runner=dict(
        type=SlurmRunner,
        max_num_workers=8,
        task=dict(type=OpenICLAttackTask),
        retry=0),
)

attack = dict(
    attack='textfooler',
    query_budget=100,
    prompt_topk=2,
)







Run the experiment

Please use --mode infer when run the attack experiment, and set PYTHONPATH env.

python run.py configs/eval_attack.py --mode infer





All the results will be saved in attack folder.
The content includes the original prompt accuracy and the attacked prompt with dropped accuracy of topk prompt, for instance:

Prompt: Assess the connection between the following sentences and classify it as 'A. entailment' or 'B. not_entailment'., acc: 59.15%
Prompt: Does the relationship between the given sentences represent entailment or not_entailment? Respond with 'A. entailment' or 'B. not_entailment'., acc: 57.75%
Prompt: Analyze the two provided sentences and decide if their relationship is 'A. entailment' or 'B. not_entailment'., acc: 56.34%
Prompt: Identify whether the given pair of sentences demonstrates entailment or not_entailment. Answer with 'A. entailment' or 'B. not_entailment'., acc: 54.93%
...
Original prompt: Assess the connection between the following sentences and classify it as 'A. entailment' or 'B. not_entailment'.
Attacked prompt: b"Assess the attach between the following sentences and sorted it as 'A. entailment' or 'B. not_entailment'."
Original acc: 59.15%, attacked acc: 40.85%, dropped acc: 18.31%
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Long Context Evaluation Guidance


Introduction

Although large-scale language models (LLMs) such as GPT-4 have demonstrated significant advantages in handling natural language tasks, most current open-source models can only handle texts with a length of a few thousand tokens, which limits their ability to process long contexts such as reading books and writing text summaries. To explore the performance of models in dealing with long contexts, we use the L-Eval [https://github.com/OpenLMLab/LEval] and LongBench [https://github.com/THUDM/LongBench] datasets to test the model’s ability to handle long contexts.



Existing Algorithms and models

When dealing with long context inputs, the two main challenges faced by large models are the inference time cost and catastrophic forgetting. Recently, a large amount of research has been devoted to extending the model length, focusing on three improvement directions:


	Attention mechanisms. The ultimate goal of these methods is to reduce the computation cost of query-key pairs, but they may affect the performance of downstream tasks.


	Input methods. Some studies divide long context inputs into chunks or retrieve pre-existing text segments to enhance the model’s ability to handle long contexts, but these methods are only effective for some tasks and are difficult to adapt to multiple downstream tasks.


	Position encoding. This research includes RoPE, ALiBi, Position Interpolation etc., which have shown good results in length extrapolation. These methods have been used to train long context models such as ChatGLM2-6B-32k and LongChat-32k.




First, we introduce some popular position encoding algorithms.


RoPE

RoPE is a type of positional embedding that injects the information of position in Transformer. It encodes the absolute position with a rotation matrix and meanwhile incorporates the explicit relative position dependency in self-attention formulation. A graphic illustration of RoPE is shown below.
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Subjective Evaluation Guidance


Introduction

Subjective evaluation aims to assess the model’s performance in tasks that align with human preferences. The key criterion for this evaluation is human preference, but it comes with a high cost of annotation.

To explore the model’s subjective capabilities, we employ JudgeLLM as a substitute for human assessors (LLM-as-a-Judge [https://arxiv.org/abs/2306.05685]).

A popular evaluation method involves


	Compare Mode: comparing model responses pairwise to calculate their win rate


	Score Mode: another method involves calculate scores with single model response (Chatbot Arena [https://chat.lmsys.org/]).




We support the use of GPT-4 (or other JudgeLLM) for the subjective evaluation of models based on above methods.



Current Supported Subjective Evaluation Datasets


	AlignBench (https://github.com/THUDM/AlignBench)


	MTBench (https://github.com/lm-sys/FastChat)


	AlpacaEvalv2 (https://github.com/tatsu-lab/alpaca_eval)


	ArenaHard (https://github.com/lm-sys/arena-hard/tree/main)


	CompassArena (Internal dataset)






Subjective Evaluation with Custom Dataset

The specific process includes:


	Data preparation


	Model response generation


	Evaluate the response with a JudgeLLM


	Generate JudgeLLM’s response and calculate the metric





Step-1: Data Preparation

We provide mini test-set for Compare Mode and Score Mode as below:

###COREV2
[
    {
        "question": "如果我在空中垂直抛球，球最初向哪个方向行进？",
        "capability": "知识-社会常识",
        "others": {
            "question": "如果我在空中垂直抛球，球最初向哪个方向行进？",
            "evaluating_guidance": "",
            "reference_answer": "上"
        }
    },...]

###CreationV0.1
[
    {
        "question": "请你扮演一个邮件管家，我让你给谁发送什么主题的邮件，你就帮我扩充好邮件正文，并打印在聊天框里。你需要根据我提供的邮件收件人以及邮件主题，来斟酌用词，并使用合适的敬语。现在请给导师发送邮件，询问他是否可以下周三下午15:00进行科研同步会，大约200字。",
        "capability": "邮件通知",
        "others": ""
    },





The json must includes the following fields:


	‘question’: Question description


	‘capability’: The capability dimension of the question.


	‘others’: Other needed information.




If you want to modify prompt on each single question, you can full some other information into ‘others’ and construct it.



Step-2: Evaluation Configuration(Compare Mode)

For config/eval_subjective_compare.py, we provide some annotations to help users understand the configuration file.


from mmengine.config import read_base
from opencompass.models import HuggingFaceCausalLM, HuggingFace, OpenAI

from opencompass.partitioners import NaivePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import Corev2Summarizer

with read_base():
    # Pre-defined models
    from .models.qwen.hf_qwen_7b_chat import models as hf_qwen_7b_chat
    from .models.chatglm.hf_chatglm3_6b import models as hf_chatglm3_6b
    from .models.qwen.hf_qwen_14b_chat import models as hf_qwen_14b_chat
    from .models.openai.gpt_4 import models as gpt4_model
    from .datasets.subjective_cmp.subjective_corev2 import subjective_datasets

# Evaluation datasets
datasets = [*subjective_datasets]

# Model to be evaluated
models = [*hf_qwen_7b_chat, *hf_chatglm3_6b]

# Inference configuration
infer = dict(
    partitioner=dict(type=NaivePartitioner),
    runner=dict(
        type=SlurmSequentialRunner,
        partition='llmeval',
        quotatype='auto',
        max_num_workers=256,
        task=dict(type=OpenICLInferTask)),
)
# Evaluation configuration
eval = dict(
    partitioner=dict(
        type=SubjectiveNaivePartitioner,
        mode='m2n', # m-model v.s n-model
        # Under m2n setting
        # must specify base_models and compare_models, program will generate pairs between base_models compare_models.
        base_models = [*hf_qwen_14b_chat], # Baseline model
        compare_models = [*hf_baichuan2_7b, *hf_chatglm3_6b] # model to be evaluated
    ),
    runner=dict(
        type=SlurmSequentialRunner,
        partition='llmeval',
        quotatype='auto',
        max_num_workers=256,
        task=dict(
            type=SubjectiveEvalTask,
        judge_cfg=gpt4_model # Judge model
        )),
)
work_dir = './outputs/subjective/'

summarizer = dict(
    type=Corev2Summarizer,  # Custom summarizer
    match_method='smart', # Answer extraction
)





In addition, you can also change the response order of the two models, please refer to config/eval_subjective_compare.py,
when infer_order is setting to random, the response will be random ordered,
when infer_order is setting to double, the response of two models will be doubled in two ways.



Step-2: Evaluation Configuration(Score Mode)

For config/eval_subjective_score.py, it is mainly same with config/eval_subjective_compare.py, and you just need to modify the eval mode to singlescore.



Step-3: Launch the Evaluation

python run.py config/eval_subjective_score.py -r





The -r parameter allows the reuse of model inference and GPT-4 evaluation results.

The response of JudgeLLM will be output to output/.../results/timestamp/xxmodel/xxdataset/.json.
The evaluation report will be output to output/.../summary/timestamp/report.csv.

Opencompass has supported lots of JudgeLLM, actually, you can take any model as JudgeLLM in opencompass configs.
And we list the popular open-source JudgeLLM here:


	Auto-J, refer to configs/models/judge_llm/auto_j




Consider cite the following paper if you find it helpful:

@article{li2023generative,
  title={Generative judge for evaluating alignment},
  author={Li, Junlong and Sun, Shichao and Yuan, Weizhe and Fan, Run-Ze and Zhao, Hai and Liu, Pengfei},
  journal={arXiv preprint arXiv:2310.05470},
  year={2023}
}
@misc{2023opencompass,
    title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
    author={OpenCompass Contributors},
    howpublished = {\url{https://github.com/open-compass/opencompass}},
    year={2023}
}






	JudgeLM, refer to configs/models/judge_llm/judgelm




@article{zhu2023judgelm,
  title={JudgeLM: Fine-tuned Large Language Models are Scalable Judges},
  author={Zhu, Lianghui and Wang, Xinggang and Wang, Xinlong},
  journal={arXiv preprint arXiv:2310.17631},
  year={2023}
}
@misc{2023opencompass,
    title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
    author={OpenCompass Contributors},
    howpublished = {\url{https://github.com/open-compass/opencompass}},
    year={2023}
}






	PandaLM, refer to configs/models/judge_llm/pandalm




Consider cite the following paper if you find it helpful:

@article{wang2023pandalm,
  title={PandaLM: An Automatic Evaluation Benchmark for LLM Instruction Tuning Optimization},
  author={Wang, Yidong and Yu, Zhuohao and Zeng, Zhengran and Yang, Linyi and Wang, Cunxiang and Chen, Hao and Jiang, Chaoya and Xie, Rui and Wang, Jindong and Xie, Xing and others},
  journal={arXiv preprint arXiv:2306.05087},
  year={2023}
}
@misc{2023opencompass,
    title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
    author={OpenCompass Contributors},
    howpublished = {\url{https://github.com/open-compass/opencompass}},
    year={2023}
}








Multi-round Subjective Evaluation in OpenCompass

In OpenCompass, we also support subjective multi-turn dialogue evaluation. For instance, the evaluation of MT-Bench can be referred to in configs/eval_subjective_mtbench.py.

In the multi-turn dialogue evaluation, you need to organize the data format into the following dialogue structure:

"dialogue": [
    {
        "role": "user",
        "content": "Imagine you are participating in a race with a group of people. If you have just overtaken the second person, what's your current position? Where is the person you just overtook?"
    },
    {
        "role": "assistant",
        "content": ""
    },
    {
        "role": "user",
        "content": "If the \"second person\" is changed to \"last person\" in the above question, what would the answer be?"
    },
    {
        "role": "assistant",
        "content": ""
    }
],





It’s important to note that due to the different question types in MTBench having different temperature settings, we need to divide the original data files into three different subsets according to the temperature for separate inference. For different subsets, we can set different temperatures. For specific settings, please refer to configs\datasets\subjective\multiround\mtbench_single_judge_diff_temp.py.

Consider cite the following paper if you find it helpful:

@misc{zheng2023judging,
      title={Judging LLM-as-a-judge with MT-Bench and Chatbot Arena},
      author={Lianmin Zheng and Wei-Lin Chiang and Ying Sheng and Siyuan Zhuang and Zhanghao Wu and Yonghao Zhuang and Zi Lin and Zhuohan Li and Dacheng Li and Eric. P Xing and Hao Zhang and Joseph E. Gonzalez and Ion Stoica},
      year={2023},
      eprint={2306.05685},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@misc{2023opencompass,
    title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
    author={OpenCompass Contributors},
    howpublished = {\url{https://github.com/open-compass/opencompass}},
    year={2023}
}







Practice: AlignBench Evaluation


Dataset

mkdir -p ./data/subjective/

cd ./data/subjective
git clone https://github.com/THUDM/AlignBench.git

# data format conversion
python ../../../tools/convert_alignmentbench.py --mode json --jsonl data/data_release.jsonl







Configuration

Please edit the config configs/eval_subjective_alignbench.py according to your demand.



Evaluation

HF_EVALUATE_OFFLINE=1 HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 python run.py workspace/eval_subjective_alignbench.py







Submit to Official Leaderboard(Optional)

If you need to submit your prediction into official leaderboard, you can use tools/convert_alignmentbench.py for format conversion.


	Make sure you have the following results




outputs/
└── 20231214_173632
    ├── configs
    ├── logs
    ├── predictions # model's response
    ├── results
    └── summary






	Convert the data




python tools/convert_alignmentbench.py --mode csv --exp-folder outputs/20231214_173632






	Get .csv  in submission/ for submission




outputs/
└── 20231214_173632
    ├── configs
    ├── logs
    ├── predictions
    ├── results
    ├── submission # 可提交文件
    └── summary
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CircularEval


Background

For multiple-choice questions, when a Language Model (LLM) provides the correct option, it does not necessarily imply a true understanding and reasoning of the question. It could be a guess. To differentiate these scenarios and reduce LLM bias towards options, CircularEval (CircularEval) can be utilized. A multiple-choice question is augmented by shuffling its options, and if the LLM correctly answers all variations of the augmented question, it is considered correct under CircularEval.



Adding Your Own CircularEval Dataset

Generally, to evaluate a dataset using CircularEval, both its loading and evaluation methods need to be rewritten. Modifications are required in both the OpenCompass main library and configuration files. We will use C-Eval as an example for explanation.

OpenCompass main library:

from opencompass.datasets.ceval import CEvalDataset
from opencompass.datasets.circular import CircularDatasetMeta

class CircularCEvalDataset(CEvalDataset, metaclass=CircularDatasetMeta):
    # The overloaded dataset class
    dataset_class = CEvalDataset

    # Splits of the DatasetDict that need CircularEval. For CEvalDataset, which loads [dev, val, test], we only need 'val' and 'test' for CircularEval, not 'dev'
    default_circular_splits = ['val', 'test']

    # List of keys to be shuffled
    default_option_keys = ['A', 'B', 'C', 'D']

    # If the content of 'answer_key' is one of ['A', 'B', 'C', 'D'], representing the correct answer. This field indicates how to update the correct answer after shuffling options. Choose either this or default_answer_key_switch_method
    default_answer_key = 'answer'

    # If 'answer_key' content is not one of ['A', 'B', 'C', 'D'], a function can be used to specify the correct answer after shuffling options. Choose either this or default_answer_key
    # def default_answer_key_switch_method(item, circular_pattern):
    #     # 'item' is the original data item
    #     # 'circular_pattern' is a tuple indicating the order after shuffling options, e.g., ('D', 'A', 'B', 'C') means the original option A is now D, and so on
    #     item['answer'] = circular_pattern['ABCD'.index(item['answer'])]
    #     return item





CircularCEvalDataset accepts the circular_pattern parameter with two values:


	circular: Indicates a single cycle. It is the default value. ABCD is expanded to ABCD, BCDA, CDAB, DABC, a total of 4 variations.


	all_possible: Indicates all permutations. ABCD is expanded to ABCD, ABDC, ACBD, ACDB, ADBC, ADCB, BACD, …, a total of 24 variations.




Additionally, we provide a CircularEvaluator to replace AccEvaluator. This Evaluator also accepts circular_pattern, and it should be consistent with the above. It produces the following metrics:


	acc_{origin|circular|all_possible}: Treating each question with shuffled options as separate, calculating accuracy.


	perf_{origin|circular|all_possible}: Following Circular logic, a question is considered correct only if all its variations with shuffled options are answered correctly, calculating accuracy.


	more_{num}_{origin|circular|all_possible}: According to Circular logic, a question is deemed correct if the number of its variations answered correctly is greater than or equal to num, calculating accuracy.




OpenCompass configuration file:

from mmengine.config import read_base
from opencompass.datasets.circular import CircularCEvalDataset

with read_base():
    from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets

for d in ceval_datasets:
    # Overloading the load method
    d['type'] = CircularCEvalDataset
    # Renaming for differentiation from non-circular evaluation versions
    d['abbr'] = d['abbr'] + '-circular-4'
    # Overloading the evaluation method
    d['eval_cfg']['evaluator'] = {'type': CircularEvaluator}

# The dataset after the above operations looks like this:
# dict(
#     type=CircularCEvalDataset,
#     path='./data/ceval/formal_ceval',  # Unchanged
#     name='computer_network',  # Unchanged
#     abbr='ceval-computer_network-circular-4',
#     reader_cfg=dict(...),  # Unchanged
#     infer_cfg=dict(...),  # Unchanged
#     eval_cfg=dict(evaluator=dict(type=CircularEvaluator), ...),
# )





Additionally, for better presentation of results in CircularEval, consider using the following summarizer:



from mmengine.config import read_base
from opencompass.summarizers import CircularSummarizer

with read_base():
    from ...summarizers.groups.ceval.ceval_summary_groups

new_summary_groups = []
for item in ceval_summary_groups:
    new_summary_groups.append(
        {
            'name': item['name'] + '-circular-4',
            'subsets': [i + '-circular-4' for i in item['subsets']],
        }
    )

summarizer = dict(
    type=CircularSummarizer,
    # Select specific metrics to view
    metric_types=['acc_origin', 'perf_circular'],
    dataset_abbrs = [
        'ceval-circular-4',
        'ceval-humanities-circular-4',
        'ceval-stem-circular-4',
        'ceval-social-science-circular-4',
        'ceval-other-circular-4',
    ],
    summary_groups=new_summary_groups,
)





For more complex evaluation examples, refer to this sample code: https://github.com/open-compass/opencompass/tree/main/configs/eval_circular.py
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Data Contamination Assessment

Data Contamination refers to the phenomenon where data intended for downstream testing tasks appear in the training data of large language models (LLMs), resulting in artificially inflated performance metrics in downstream tasks (such as summarization, natural language inference, text classification), which do not accurately reflect the model’s true generalization capabilities.

Since the source of data contamination lies in the training data used by LLMs, the most direct method to detect data contamination is to collide test data with training data and then report the extent of overlap between the two. The classic GPT-3 paper [https://arxiv.org/pdf/2005.14165.pdf] reported on this in Table C.1.

However, today’s open-source community often only publishes model parameters, not training datasets. In such cases, how to determine the presence and extent of data contamination remains unsolved. OpenCompass offers two possible solutions.


Contamination Data Annotation Based on Self-Built Co-Distribution Data

Referencing the method mentioned in Section 5.2 of Skywork [https://arxiv.org/pdf/2310.19341.pdf], we directly used the dataset mock_gsm8k_test [https://huggingface.co/datasets/Skywork/mock_gsm8k_test] uploaded to HuggingFace by Skywork.

In this method, the authors used GPT-4 to synthesize data similar to the original GSM8K style, and then calculated the perplexity on the GSM8K training set (train), GSM8K test set (test), and GSM8K reference set (ref). Since the GSM8K reference set was newly generated, the authors considered it as clean, not belonging to any training set of any model. They posited:


	If the test set’s perplexity is significantly lower than the reference set’s, the test set might have appeared in the model’s training phase;


	If the training set’s perplexity is significantly lower than the test set’s, the training set might have been overfitted by the model.




The following configuration file can be referenced:

from mmengine.config import read_base

with read_base():
    from .datasets.gsm8k_contamination.gsm8k_contamination_ppl_ecdd22 import gsm8k_datasets  # includes training, test, and reference sets
    from .models.qwen.hf_qwen_7b import models as hf_qwen_7b_model  # model under review
    from .models.yi.hf_yi_6b import models as hf_yi_6b_model

datasets = [*gsm8k_datasets]
models = [*hf_qwen_7b_model, *hf_yi_6b_model]





An example output is as follows:

dataset          version    metric       mode       internlm-7b-hf    qwen-7b-hf    yi-6b-hf    chatglm3-6b-base-hf    qwen-14b-hf    baichuan2-13b-base-hf    internlm-20b-hf    aquila2-34b-hf  ...
---------------  ---------  -----------  -------  ----------------  ------------  ----------  ---------------------  -------------  -----------------------  -----------------  ----------------  ...
gsm8k-train-ppl  0b8e46     average_ppl  unknown              1.5           0.78        1.37                   1.16           0.5                      0.76               1.41              0.78  ...
gsm8k-test-ppl   0b8e46     average_ppl  unknown              1.56          1.33        1.42                   1.3            1.15                     1.13               1.52              1.16  ...
gsm8k-ref-ppl    f729ba     average_ppl  unknown              1.55          1.2         1.43                   1.35           1.27                     1.19               1.47              1.35  ...





Currently, this solution only supports the GSM8K dataset. We welcome the community to contribute more datasets.

Consider cite the following paper if you find it helpful:

@misc{2023opencompass,
    title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
    author={OpenCompass Contributors},
    howpublished = {\url{https://github.com/open-compass/opencompass}},
    year={2023}
}
@misc{wei2023skywork,
      title={Skywork: A More Open Bilingual Foundation Model},
      author={Tianwen Wei and Liang Zhao and Lichang Zhang and Bo Zhu and Lijie Wang and Haihua Yang and Biye Li and Cheng Cheng and Weiwei Lü and Rui Hu and Chenxia Li and Liu Yang and Xilin Luo and Xuejie Wu and Lunan Liu and Wenjun Cheng and Peng Cheng and Jianhao Zhang and Xiaoyu Zhang and Lei Lin and Xiaokun Wang and Yutuan Ma and Chuanhai Dong and Yanqi Sun and Yifu Chen and Yongyi Peng and Xiaojuan Liang and Shuicheng Yan and Han Fang and Yahui Zhou},
      year={2023},
      eprint={2310.19341},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}







Contamination Data Annotation Based on Classic Pre-trained Sets

Thanks to Contamination_Detector [https://github.com/liyucheng09/Contamination_Detector] and @liyucheng09 for providing this method.

In this method, the authors search the test datasets (such as C-Eval, ARC, HellaSwag, etc.) using the Common Crawl database and Bing search engine, then mark each test sample as clean / question contaminated / both question and answer contaminated.

During testing, OpenCompass

will report the accuracy or perplexity of ceval on subsets composed of these three labels. Generally, the accuracy ranges from low to high: clean, question contaminated, both question and answer contaminated subsets. The authors believe:


	If the performance of the three is relatively close, the contamination level of the model on that test set is light; otherwise, it is heavy.




The following configuration file can be referenced link [https://github.com/open-compass/opencompass/blob/main/configs/eval_contamination.py]:

from mmengine.config import read_base

with read_base():
    from .datasets.ceval.ceval_clean_ppl import ceval_datasets  # ceval dataset with contamination tags
    from .models.yi.hf_yi_6b import models as hf_yi_6b_model  # model under review
    from .models.qwen.hf_qwen_7b import models as hf_qwen_7b_model
    from .summarizers.contamination import ceval_summarizer as summarizer  # output formatting

datasets = [*ceval_datasets]
models = [*hf_yi_6b_model, *hf_qwen_7b_model]





An example output is as follows:

dataset                                         version    mode    yi-6b-hf          -                              -                                        qwen-7b-hf        -                              -                                        ...
----------------------------------------------  ---------  ------  ----------------  -----------------------------  ---------------------------------------  ----------------  -----------------------------  ---------------------------------------  ...
-                                               -          -       accuracy - clean  accuracy - input contaminated  accuracy - input-and-label contaminated  accuracy - clean  accuracy - input contaminated  accuracy - input-and-label contaminated  ...
...
ceval-humanities                                -          ppl     74.42             75.00                          82.14                                    67.44             50.00                          70.54                                    ...
ceval-stem                                      -          ppl     53.70             57.14                          85.61                                    47.41             52.38                          67.63                                    ...
ceval-social-science                            -          ppl     81.60             84.62                          83.09                                    76.00             61.54                          72.79                                    ...
ceval-other                                     -          ppl     72.31             73.91                          75.00                                    58.46             39.13                          61.88                                    ...
ceval-hard                                      -          ppl     44.35             37.50                          70.00                                    41.13             25.00                          30.00                                    ...
ceval                                           -          ppl     67.32             71.01                          81.17                                    58.97             49.28                          67.82                                    ...





Currently, this solution only supports the C-Eval, MMLU, HellaSwag and ARC. Contamination_Detector [https://github.com/liyucheng09/Contamination_Detector] also includes CSQA and WinoGrande, but these have not yet been implemented in OpenCompass. We welcome the community to contribute more datasets.

Consider cite the following paper if you find it helpful:

@misc{2023opencompass,
    title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
    author={OpenCompass Contributors},
    howpublished = {\url{https://github.com/open-compass/opencompass}},
    year={2023}
}
@article{Li2023AnOS,
  title={An Open Source Data Contamination Report for Llama Series Models},
  author={Yucheng Li},
  journal={ArXiv},
  year={2023},
  volume={abs/2310.17589},
  url={https://api.semanticscholar.org/CorpusID:264490711}
}
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Needle In A Haystack Experimental Evaluation


Introduction to the Needle In A Haystack Test

The Needle In A Haystack test (inspired by NeedleInAHaystack [https://github.com/gkamradt/LLMTest_NeedleInAHaystack/blob/main/LLMNeedleHaystackTester.py]) is an evaluation method that randomly inserts key information into long texts to form prompts for large language models (LLMs). The test aims to detect whether large models can extract such key information from extensive texts, thereby assessing the models’ capabilities in processing and understanding long documents.



Task Overview

Within the NeedleBench framework of OpenCompass, we have designed a series of increasingly challenging test scenarios to comprehensively evaluate the models’ abilities in long text information extraction and reasoning:


	Single-Needle Retrieval Task (S-RT): Assesses an LLM’s ability to extract a single key piece of information from a long text, testing its precision in recalling specific details within broad narratives. This corresponds to the original Needle In A Haystack test setup.


	Multi-Needle Retrieval Task (M-RT): Explores an LLM’s capability to retrieve multiple related pieces of information from long texts, simulating real-world scenarios of complex queries on comprehensive documents.


	Multi-Needle Reasoning Task (M-RS): Evaluates an LLM’s long-text abilities by extracting and utilizing multiple key pieces of information, requiring the model to have a comprehensive understanding of each key information fragment.


	Ancestral Trace Challenge (ATC): Uses the “relational needle” to test an LLM’s ability to handle multi-layer logical challenges in real long texts. In the ATC task, a series of logical reasoning questions are used to test the model’s memory and analytical skills for every detail in the text. For this task, we remove the irrelevant text (Haystack) setting, designing all texts as critical information, requiring the LLM to use all the content and reasoning in the text accurately to answer the questions.





Evaluation Steps


	Download the dataset from here [https://github.com/open-compass/opencompass/files/14741330/needlebench.zip].


	Place the downloaded files in the opencompass/data/needlebench/ directory. The expected file structure in the needlebench directory is shown below:




opencompass/
├── configs
├── docs
├── data
│   └── needlebench
│       ├── multi_needle_reasoning_en.json
│       ├── multi_needle_reasoning_zh.json
│       ├── names.json
│       ├── needles.jsonl
│       ├── PaulGrahamEssays.jsonl
│       ├── zh_finance.jsonl
│       ├── zh_game.jsonl
│       ├── zh_government.jsonl
│       ├── zh_movie.jsonl
│       ├── zh_tech.jsonl
│       ├── zh_general.jsonl
├── LICENSE
├── opencompass
├── outputs
├── run.py
├── more...







OpenCompass Environment Setup

conda create --name opencompass python=3.10 pytorch torchvision pytorch-cuda -c nvidia -c pytorch -y
conda activate opencompass
git clone https://github.com/open-compass/opencompass opencompass
cd opencompass
pip install -e .







Configuring the Dataset

We have pre-configured datasets for common text lengths (4k, 8k, 32k, 128k, 200k, 1000k) in configs/datasets/needlebench, allowing you to flexibly create datasets that meet your needs by defining related parameters in the configuration files.



Evaluation Example


Evaluating InternLM2-7B Model Deployed Using LMDeploy

For example, to evaluate the InternLM2-7B model deployed using LMDeploy for all tasks in NeedleBench-4K, you can directly use the following command in the command line. This command calls the pre-defined model and dataset configuration files without needing to write additional configuration files:


Local Evaluation

If you are evaluating the model locally, the command below will utilize all available GPUs on your machine. You can limit the GPU access for OpenCompass by setting the CUDA_VISIBLE_DEVICES environment variable. For instance, using CUDA_VISIBLE_DEVICES=0,1,2,3 python run.py ... will only expose the first four GPUs to OpenCompass, ensuring that it does not use more than these four GPUs.

# Local Evaluation
python run.py --dataset needlebench_4k --models lmdeploy_internlm2_chat_7b  --summarizer needlebench/needlebench_4k_summarizer







Evaluation on a Slurm Cluster

If using Slurm, you can add parameters such as --slurm -p partition_name -q reserved --max-num-workers 32 --max-partition-size 8000, as shown below:

# Slurm Evaluation
python run.py --dataset needlebench_4k --models lmdeploy_internlm2_chat_7b  --summarizer needlebench/needlebench_4k_summarizer --slurm -p partition_name -q reserved --max-num-workers 32 --max-partition-size 8000







Evaluating a Subdataset Only

If you only want to test the original NeedleInAHaystack task setup, you could change the dataset parameter to needlebench_single_4k, which corresponds to the single needle version of the NeedleInAHaystack test at 4k length:

python run.py --dataset needlebench_single_4k --models lmdeploy_internlm2_chat_7b  --summarizer needlebench/needlebench_4k_summarizer --slurm -p partition_name -q reserved --max-num-workers 32 --max-partition-size 8000





You can also choose to evaluate a specific subdataset, such as changing the --datasets parameter to needlebench_single_4k/needlebench_zh_datasets for testing just the Chinese version of the single needle 4K length NeedleInAHaystack task. The parameter after / represents the subdataset, which can be found in the dataset variable of configs/datasets/needlebench/needlebench_4k/needlebench_single_4k.py :

python run.py --dataset needlebench_single_4k/needlebench_zh_datasets --models lmdeploy_internlm2_chat_7b  --summarizer needlebench/needlebench_4k_summarizer --slurm -p partition_name -q reserved --max-num-workers 32 --max-partition-size 8000





Be sure to install the LMDeploy [https://github.com/InternLM/lmdeploy] tool before starting the evaluation:

pip install lmdeploy





This command initiates the evaluation process, with parameters -p partition_name -q auto and --max-num-workers 32 used to specify the Slurm partition name and the maximum number of worker processes.




Evaluating Other Huggingface Models

For other models, we recommend writing an additional configuration file to modify the model’s max_seq_len and max_out_len parameters so the model can receive the complete long text content, as we have prepared in the configs/eval_needlebench.py file. The complete content is as follows:

from mmengine.config import read_base
with read_base():
    from .models.hf_internlm.lmdeploy_internlm2_chat_7b import models as internlm2_chat_7b_200k
    from .models.hf_internlm.hf_internlm2_chat_7b import models as internlm2_chat_7b

    # Evaluate needlebench_4k, adjust the configuration to use 8k, 32k, 128k, 200k, or 1000k if necessary.
    # from .datasets.needlebench.needlebench_4k.needlebench_4k import needlebench_datasets
    # from .summarizers.needlebench import needlebench_4k_summarizer as summarizer

    # only eval original "needle in a haystack test" in needlebench_4k
    from .datasets.needlebench.needlebench_4k.needlebench_single_4k import needlebench_zh_datasets, needlebench_en_datasets
    from .summarizers.needlebench import needlebench_4k_summarizer as summarizer

    # eval Ancestral Tracing Challenge(ATC)
    # from .datasets.needlebench.atc.atc_choice_50 import needlebench_datasets
    # from .summarizers.needlebench import atc_summarizer_50 as summarizer

datasets = sum([v for k, v in locals().items() if ('datasets' in k)], [])

for m in internlm2_chat_7b:
    m['max_seq_len'] = 32768 # Ensure InternLM2-7B model can receive the complete long text, other models need to adjust according to their maximum sequence length support.
    m['max_out_len'] = 2000 # Ensure that in the multi-needle recall task, the model can receive a complete response

models = internlm2_chat_7b

work_dir = './outputs/needlebench'





Once the test config file is written, we can pass the corresponding config file path through the run.py file in the command line, such as:

python run.py configs/eval_needlebench.py --slurm -p partition_name -q reserved --max-num-workers 128 --max-partition-size 8000





Note, at this point, we do not need to pass in the --dataset, --models, --summarizer parameters, as we have already defined these configurations in the config file. You can manually adjust the --max-partition-size setting to achieve the best task slicing strategy to improve evaluation efficiency.




Visualization

We have built-in result visualization into the summarizer implementation in the latest code version. You can find the corresponding visualizations in the plots directory of the respective output folder, eliminating the need for manual visualization of scores across various depths and lengths.

If you use this method, please add a reference:

@misc{2023opencompass,
    title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
    author={OpenCompass Contributors},
    howpublished={\url{https://github.com/open-compass/opencompass}},
    year={2023}


}

@misc{LLMTest_NeedleInAHaystack,
  title={LLMTest Needle In A Haystack - Pressure Testing LLMs},
  author={gkamradt},
  year={2023},
  howpublished={\url{https://github.com/gkamradt/LLMTest_NeedleInAHaystack}}
}

@misc{wei2023skywork,
      title={Skywork: A More Open Bilingual Foundation Model},
      author={Tianwen Wei and Liang Zhao and Lichang Zhang and Bo Zhu and Lijie Wang and Haihua Yang and Biye Li and Cheng Cheng and Weiwei Lü and Rui Hu and Chenxia Li and Liu Yang and Xilin Luo and Xuejie Wu and Lunan Liu and Wenjun Cheng and Peng Cheng and Jianhao Zhang and Xiaoyu Zhang and Lei Lin and Xiaokun Wang and Yutuan Ma and Chuanhai Dong and Yanqi Sun and Yifu Chen and Yongyi Peng and Xiaojuan Liang and Shuicheng Yan and Han Fang and Yahui Zhou},
      year={2023},
      eprint={2310.19341},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
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Useful Tools


Prompt Viewer

This tool allows you to directly view the generated prompt without starting the full training process. If the passed configuration is only the dataset configuration (such as configs/datasets/nq/nq_gen.py), it will display the original prompt defined in the dataset configuration. If it is a complete evaluation configuration (including the model and the dataset), it will display the prompt received by the selected model during operation.

Running method:

python tools/prompt_viewer.py CONFIG_PATH [-n] [-a] [-p PATTERN]






	-n: Do not enter interactive mode, select the first model (if any) and dataset by default.


	-a: View the prompts received by all models and all dataset combinations in the configuration.


	-p PATTERN: Do not enter interactive mode, select all datasets that match the input regular expression.






Case Analyzer (To be updated)

Based on existing evaluation results, this tool produces inference error samples and full samples with annotation information.

Running method:

python tools/case_analyzer.py CONFIG_PATH [-w WORK_DIR]






	-w: Work path, default is './outputs/default'.






Lark Bot

Users can configure the Lark bot to implement real-time monitoring of task status. Please refer to this document [https://open.feishu.cn/document/ukTMukTMukTM/ucTM5YjL3ETO24yNxkjN?lang=zh-CN#7a28964d] for setting up the Lark bot.

Configuration method:


	Open the configs/secrets.py file, and add the following line to the file:




lark_bot_url = 'YOUR_WEBHOOK_URL'






	Normally, the Webhook URL format is like https://open.feishu.cn/open-apis/bot/v2/hook/xxxxxxxxxxxxxxxxx .


	Inherit this file in the complete evaluation configuration


	To avoid the bot sending messages frequently and causing disturbance, the running status will not be reported automatically by default. If necessary, you can start status reporting through -l or --lark:




python run.py configs/eval_demo.py -l







API Model Tester

This tool can quickly test whether the functionality of the API model is normal.

Running method:

python tools/test_api_model.py [CONFIG_PATH] -n







Prediction Merger

This tool can merge patitioned predictions.

Running method:

python tools/prediction_merger.py CONFIG_PATH [-w WORK_DIR]






	-w: Work path, default is './outputs/default'.






List Configs

This tool can list or search all available model and dataset configurations. It supports fuzzy search, making it convenient for use in conjunction with run.py.

Usage:

python tools/list_configs.py [PATTERN1] [PATTERN2] [...]





If executed without any parameters, it will list all model configurations in the configs/models and configs/dataset directories by default.

Users can also pass any number of parameters. The script will list all configurations related to the provided strings, supporting fuzzy search and the use of the * wildcard. For example, the following command will list all configurations related to mmlu and llama:

python tools/list_configs.py mmlu llama





Its output could be:

+-----------------+-----------------------------------+
| Model           | Config Path                       |
|-----------------+-----------------------------------|
| hf_llama2_13b   | configs/models/hf_llama2_13b.py   |
| hf_llama2_70b   | configs/models/hf_llama2_70b.py   |
| hf_llama2_7b    | configs/models/hf_llama2_7b.py    |
| hf_llama_13b    | configs/models/hf_llama_13b.py    |
| hf_llama_30b    | configs/models/hf_llama_30b.py    |
| hf_llama_65b    | configs/models/hf_llama_65b.py    |
| hf_llama_7b     | configs/models/hf_llama_7b.py     |
| llama2_13b_chat | configs/models/llama2_13b_chat.py |
| llama2_70b_chat | configs/models/llama2_70b_chat.py |
| llama2_7b_chat  | configs/models/llama2_7b_chat.py  |
+-----------------+-----------------------------------+
+-------------------+---------------------------------------------------+
| Dataset           | Config Path                                       |
|-------------------+---------------------------------------------------|
| cmmlu_gen         | configs/datasets/cmmlu/cmmlu_gen.py               |
| cmmlu_gen_ffe7c0  | configs/datasets/cmmlu/cmmlu_gen_ffe7c0.py        |
| cmmlu_ppl         | configs/datasets/cmmlu/cmmlu_ppl.py               |
| cmmlu_ppl_fd1f2f  | configs/datasets/cmmlu/cmmlu_ppl_fd1f2f.py        |
| mmlu_gen          | configs/datasets/mmlu/mmlu_gen.py                 |
| mmlu_gen_23a9a9   | configs/datasets/mmlu/mmlu_gen_23a9a9.py          |
| mmlu_gen_5d1409   | configs/datasets/mmlu/mmlu_gen_5d1409.py          |
| mmlu_gen_79e572   | configs/datasets/mmlu/mmlu_gen_79e572.py          |
| mmlu_gen_a484b3   | configs/datasets/mmlu/mmlu_gen_a484b3.py          |
| mmlu_ppl          | configs/datasets/mmlu/mmlu_ppl.py                 |
| mmlu_ppl_ac766d   | configs/datasets/mmlu/mmlu_ppl_ac766d.py          |
+-------------------+---------------------------------------------------+







Dataset Suffix Updater

This tool can quickly modify the suffixes of configuration files located under the configs/dataset directory, aligning them with the naming conventions based on prompt hash.

How to run:

python tools/update_dataset_suffix.py
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Contributing to OpenCompass


	Contributing to OpenCompass


	What is PR


	Basic Workflow


	Procedures in detail


	1. Get the most recent codebase


	2. Checkout a new branch from main branch


	3. Commit your changes


	4. Push your changes to the forked repository and create a PR


	5. Discuss and review your code


	6.  Merge your branch to main branch and delete the branch






	Code style


	Python






	About Contributing Test Datasets








Thanks for your interest in contributing to OpenCompass! All kinds of contributions are welcome, including but not limited to the following.


	Fix typo or bugs


	Add documentation or translate the documentation into other languages


	Add new features and components





What is PR

PR is the abbreviation of Pull Request. Here’s the definition of PR in the official document [https://docs.github.com/en/github/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests] of Github.

Pull requests let you tell others about changes you have pushed to a branch in a repository on GitHub. Once a pull request is opened, you can discuss and review the potential changes with collaborators and add follow-up commits before your changes are merged into the base branch.







Basic Workflow


	Get the most recent codebase


	Checkout a new branch from main branch.


	Commit your changes (Don’t forget to use pre-commit hooks!)


	Push your changes and create a PR


	Discuss and review your code


	Merge your branch to main branch






Procedures in detail


1. Get the most recent codebase


	When you work on your first PR

Fork the OpenCompass repository: click the fork button at the top right corner of Github page
[image: avatar]

Clone forked repository to local

git clone git@github.com:XXX/opencompass.git





Add source repository to upstream

git remote add upstream git@github.com:InternLM/opencompass.git







	After your first PR

Checkout the latest branch of the local repository and pull the latest branch of the source repository.

git checkout main
git pull upstream main











2. Checkout a new branch from main branch

git checkout main -b branchname







3. Commit your changes


	If you are a first-time contributor, please install and initialize pre-commit hooks from the repository root directory first.

pip install -U pre-commit
pre-commit install







	Commit your changes as usual. Pre-commit hooks will be triggered to stylize your code before each commit.

# coding
git add [files]
git commit -m 'messages'






Note

Sometimes your code may be changed by pre-commit hooks. In this case, please remember to re-stage the modified files and commit again.









4. Push your changes to the forked repository and create a PR


	Push the branch to your forked remote repository

git push origin branchname







	Create a PR
[image: avatar]


	Revise PR message template to describe your motivation and modifications made in this PR. You can also link the related issue to the PR manually in the PR message (For more information, checkout the official guidance [https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue]).


	You can also ask a specific person to review the changes you’ve proposed.






5. Discuss and review your code


	Modify your codes according to reviewers’ suggestions and then push your changes.






6. Merge your branch to main branch and delete the branch


	After the PR is merged by the maintainer, you can delete the branch you created in your forked repository.

git branch -d branchname # delete local branch
git push origin --delete branchname # delete remote branch












Code style


Python

We adopt PEP8 [https://www.python.org/dev/peps/pep-0008/] as the preferred code style.

We use the following tools for linting and formatting:


	flake8 [https://github.com/PyCQA/flake8]: A wrapper around some linter tools.


	isort [https://github.com/timothycrosley/isort]: A Python utility to sort imports.


	yapf [https://github.com/google/yapf]: A formatter for Python files.


	codespell [https://github.com/codespell-project/codespell]: A Python utility to fix common misspellings in text files.


	mdformat [https://github.com/executablebooks/mdformat]: Mdformat is an opinionated Markdown formatter that can be used to enforce a consistent style in Markdown files.


	docformatter [https://github.com/myint/docformatter]: A formatter to format docstring.




Style configurations of yapf and isort can be found in setup.cfg [https://github.com/open-mmlab/OpenCompass/blob/main/setup.cfg].




About Contributing Test Datasets


	Submitting Test Datasets


	Please implement logic for automatic dataset downloading in the code; or provide a method for obtaining the dataset in the PR. The OpenCompass maintainers will follow up accordingly. If the dataset is not yet public, please indicate so.






	Submitting Data Configuration Files


	Provide a README in the same directory as the data configuration. The README should include, but is not limited to:


	A brief description of the dataset


	The official link to the dataset


	Some test examples from the dataset


	Evaluation results of the dataset on relevant models


	Citation of the dataset






	(Optional) Summarizer of the dataset


	(Optional) If the testing process cannot be achieved simply by concatenating the dataset and model configuration files, a configuration file for conducting the test is also required.


	(Optional) If necessary, please add a description of the dataset in the relevant documentation sections. This is very necessary to help users understand the testing scheme. You can refer to the following types of documents in OpenCompass:


	Circular Evaluation


	Code Evaluation


	Contamination Assessment
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Page Not Found


  The page you are looking for cannot be found.



  If you just switched documentation versions, it is likely that the page you were on is moved. You can look for it in
  the content table left, or go to the homepage.
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Using Large Models as JudgeLLM for Objective Evaluation


Introduction

Traditional objective evaluations often rely on standard answers for reference. However, in practical applications, the predicted results of models may vary due to differences in the model’s instruction-following capabilities or imperfections in post-processing functions. This can lead to incorrect extraction of answers and comparison with standard answers, resulting in potentially inaccurate evaluation outcomes. To address this issue, we have adopted a process similar to subjective evaluations by introducing JudgeLLM post-prediction to assess the consistency between model responses and standard answers. (LLM-as-a-Judge [https://arxiv.org/abs/2306.05685]).

Currently, all models supported by the opencompass repository can be directly used as JudgeLLM. Additionally, we are planning to support dedicated JudgeLLMs.



Currently Supported Objective Evaluation Datasets


	MATH (https://github.com/hendrycks/math)






Custom JudgeLLM Objective Dataset Evaluation

OpenCompass currently supports most datasets that use GenInferencer for inference. The specific process for custom JudgeLLM objective evaluation includes:


	Building evaluation configurations using API models or open-source models for inference of question answers.


	Employing a selected evaluation model (JudgeLLM) to assess the outputs of the model.





Step One: Building Evaluation Configurations, Using MATH as an Example

Below is the Config for evaluating the MATH dataset with JudgeLLM, with the evaluation model being Llama3-8b-instruct and the JudgeLLM being Llama3-70b-instruct. For more detailed config settings, please refer to configs/eval_math_llm_judge.py. The following is a brief version of the annotations to help users understand the meaning of the configuration file.

# Most of the code in this file is copied from https://github.com/openai/simple-evals/blob/main/math_eval.py
from mmengine.config import read_base
with read_base():
    from .models.hf_llama.hf_llama3_8b_instruct import models as hf_llama3_8b_instruct_model # noqa: F401, F403
    from .models.hf_llama.hf_llama3_70b_instruct import models as hf_llama3_70b_instruct_model  # noqa: F401, F403
    from .datasets.math.math_llm_judge import math_datasets  # noqa: F401, F403
from opencompass.datasets import math_judement_preprocess
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import AllObjSummarizer
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.openicl.icl_prompt_template import PromptTemplate


# ------------- Prompt Settings ----------------------------------------
# Evaluation template, please modify the template as needed, JudgeLLM typically uses [Yes] or [No] as the response. For the MATH dataset, the evaluation template is as follows:
eng_obj_prompt = """
Look at the following two expressions (answers to a math problem) and judge whether they are equivalent. Only perform trivial simplifications

Examples:

    Expression 1: $2x+3$
    Expression 2: $3+2x$

[Yes]

    Expression 1: 3/2
    Expression 2: 1.5

[Yes]

    Expression 1: $x^2+2x+1$
    Expression 2: $y^2+2y+1$

[No]

    Expression 1: $x^2+2x+1$
    Expression 2: $(x+1)^2$

[Yes]

    Expression 1: 3245/5
    Expression 2: 649

[No]
(these are actually equal, don't mark them equivalent if you need to do nontrivial simplifications)

    Expression 1: 2/(-3)
    Expression 2: -2/3

[Yes]
(trivial simplifications are allowed)

    Expression 1: 72 degrees
    Expression 2: 72

[Yes]
(give benefit of the doubt to units)

    Expression 1: 64
    Expression 2: 64 square feet

[Yes]
(give benefit of the doubt to units)

    Expression 1: 64
    Expression 2:

[No]
(only mark as equivalent if both expressions are nonempty)

---

YOUR TASK


Respond with only "[Yes]" or "[No]" (without quotes). Do not include a rationale.
    Expression 1: {obj_gold}
    Expression 2: {prediction}

"""

# ------------- Inference Phase ----------------------------------------
# Models to be evaluated
models = [*hf_llama3_8b_instruct_model]
# Evaluation models
judge_models = hf_llama3_70b_instruct_model

eng_datasets = [*math_datasets]
chn_datasets = []
datasets = eng_datasets + chn_datasets


for d in eng_datasets:
    d['eval_cfg']= dict(
        evaluator=dict(
            type=LMEvaluator,
            # If you need to preprocess model predictions before judging,
            # you can specify a pred_postprocessor function here
            pred_postprocessor=dict(type=math_judement_preprocess),
            prompt_template=dict(
                type=PromptTemplate,
                template=dict(round=[
                    dict(
                        role='HUMAN',
                        prompt = eng_obj_prompt
                    ),
                ]),
            ),
        ),
        pred_role="BOT",
    )

infer = dict(
    partitioner=dict(type=SizePartitioner, max_task_size=40000),
    runner=dict(
        type=LocalRunner,
        max_num_workers=256,
        task=dict(type=OpenICLInferTask)),
)

# ------------- Evaluation Configuration --------------------------------
eval = dict(
    partitioner=dict(
        type=SubjectiveSizePartitioner, max_task_size=80000, mode='singlescore', models=models, judge_models=judge_models,
    ),
    runner=dict(type=LocalRunner,
        max_num_workers=16, task=dict(type=SubjectiveEvalTask)),
)

summarizer = dict(
    type=AllObjSummarizer
)

# Output folder
work_dir = 'outputs/obj_all/'







Step Two: Launch Evaluation and Output Results

python run.py eval_math_llm_judge.py





This will initiate two rounds of evaluation. The first round involves model inference to obtain predicted answers to questions, and the second round involves JudgeLLM evaluating the consistency between the predicted answers and the standard answers, and scoring them.


	The results of model predictions will be saved in output/.../timestamp/predictions/xxmodel/xxx.json


	The JudgeLLM’s evaluation responses will be saved in output/.../timestamp/results/xxmodel/xxx.json


	The evaluation report will be output to output/.../timestamp/summary/timestamp/xxx.csv







Results

Using the Llama3-8b-instruct as the evaluation model and the Llama3-70b-instruct as the evaluator, the MATH dataset was assessed with the following results:



	Model

	JudgeLLM Evaluation

	Naive Evaluation





	llama-3-8b-instruct

	27.7

	27.8
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News


	[2024.01.17] We supported the evaluation of InternLM2 [https://github.com/open-compass/opencompass/blob/main/configs/eval_internlm2_keyset.py] and InternLM2-Chat [https://github.com/open-compass/opencompass/blob/main/configs/eval_internlm2_chat_keyset.py], InternLM2 showed extremely strong performance in these tests, welcome to try!


	[2024.01.17] We supported the needle in a haystack test with multiple needles, more information can be found here [https://opencompass.readthedocs.io/en/latest/advanced_guides/needleinahaystack_eval.html#id8].


	[2023.12.28] We have enabled seamless evaluation of all models developed using LLaMA2-Accessory [https://github.com/Alpha-VLLM/LLaMA2-Accessory], a powerful toolkit for comprehensive LLM development.


	[2023.12.22] We have released T-Eval [https://github.com/open-compass/T-Eval], a step-by-step evaluation benchmark to gauge your LLMs on tool utilization. Welcome to our Leaderboard [https://open-compass.github.io/T-Eval/leaderboard.html] for more details!


	[2023.12.10] We have released VLMEvalKit [https://github.com/open-compass/VLMEvalKit], a toolkit for evaluating vision-language models (VLMs), currently support 20+ VLMs and 7 multi-modal benchmarks (including MMBench series).


	[2023.12.10] We have supported Mistral AI’s MoE LLM: Mixtral-8x7B-32K. Welcome to MixtralKit [https://github.com/open-compass/MixtralKit] for more details about inference and evaluation.


	[2023.11.22] We have supported many API-based models, include Baidu, ByteDance, Huawei, 360. Welcome to Models [https://opencompass.readthedocs.io/en/latest/user_guides/models.html] section for more details.


	[2023.11.20] Thanks helloyongyang [https://github.com/helloyongyang] for supporting the evaluation with LightLLM [https://github.com/ModelTC/lightllm] as backent. Welcome to Evaluation With LightLLM [https://opencompass.readthedocs.io/en/latest/advanced_guides/evaluation_lightllm.html] for more details.


	[2023.11.13] We are delighted to announce the release of OpenCompass v0.1.8. This version enables local loading of evaluation benchmarks, thereby eliminating the need for an internet connection. Please note that with this update, you must re-download all evaluation datasets to ensure accurate and up-to-date results.


	[2023.11.06] We have supported several API-based models, include  ChatGLM Pro@Zhipu, ABAB-Chat@MiniMax and Xunfei. Welcome to Models [https://opencompass.readthedocs.io/en/latest/user_guides/models.html] section for more details.


	[2023.10.24] We release a new benchmark for evaluating LLMs’ capabilities of having multi-turn dialogues. Welcome to BotChat [https://github.com/open-compass/BotChat] for more details.


	[2023.09.26] We update the leaderboard with Qwen [https://github.com/QwenLM/Qwen], one of the best-performing open-source models currently available, welcome to our homepage [https://opencompass.org.cn] for more details.


	[2023.09.20] We update the leaderboard with InternLM-20B [https://github.com/InternLM/InternLM], welcome to our homepage [https://opencompass.org.cn] for more details.


	[2023.09.19] We update the leaderboard with WeMix-LLaMA2-70B/Phi-1.5-1.3B, welcome to our homepage [https://opencompass.org.cn] for more details.


	[2023.09.18] We have released long context evaluation guidance.


	[2023.09.08] We update the leaderboard with Baichuan-2/Tigerbot-2/Vicuna-v1.5, welcome to our homepage [https://opencompass.org.cn] for more details.


	[2023.09.06]  Baichuan2 [https://github.com/baichuan-inc/Baichuan2] team adpots OpenCompass to evaluate their models systematically. We deeply appreciate the community’s dedication to transparency and reproducibility in LLM evaluation.


	[2023.09.02] We have supported the evaluation of Qwen-VL [https://github.com/QwenLM/Qwen-VL] in OpenCompass.


	[2023.08.25]  TigerBot [https://github.com/TigerResearch/TigerBot] team adpots OpenCompass to evaluate their models systematically. We deeply appreciate the community’s dedication to transparency and reproducibility in LLM evaluation.


	[2023.08.21] Lagent [https://github.com/InternLM/lagent] has been released, which is a lightweight framework for building LLM-based agents. We are working with Lagent team to support the evaluation of general tool-use capability, stay tuned!


	[2023.08.18] We have supported evaluation for multi-modality learning, include MMBench, SEED-Bench, COCO-Caption, Flickr-30K, OCR-VQA, ScienceQA and so on. Leaderboard is on the road. Feel free to try multi-modality evaluation with  OpenCompass !


	[2023.08.18] Dataset card [https://opencompass.org.cn/dataset-detail/MMLU] is now online. Welcome new evaluation benchmark  OpenCompass !


	[2023.08.11] Model comparison [https://opencompass.org.cn/model-compare/GPT-4,ChatGPT,LLaMA-2-70B,LLaMA-65B] is now online. We hope this feature offers deeper insights!


	[2023.08.11] We have supported LEval [https://github.com/OpenLMLab/LEval].


	[2023.08.10] OpenCompass is compatible with LMDeploy [https://github.com/InternLM/lmdeploy]. Now you can follow this instruction [https://opencompass.readthedocs.io/en/latest/advanced_guides/evaluation_turbomind.html#] to evaluate the accelerated models provide by the Turbomind.


	[2023.08.10] We have supported Qwen-7B [https://github.com/QwenLM/Qwen-7B] and XVERSE-13B [https://github.com/xverse-ai/XVERSE-13B] ! Go to our leaderboard [https://opencompass.org.cn/leaderboard-llm] for more results! More models are welcome to join OpenCompass.


	[2023.08.09] Several new datasets(CMMLU, TydiQA, SQuAD2.0, DROP) are updated on our leaderboard [https://opencompass.org.cn/leaderboard-llm]! More datasets are welcomed to join OpenCompass.


	[2023.08.07] We have added a script for users to evaluate the inference results of MMBench [https://opencompass.org.cn/MMBench]-dev.


	[2023.08.05] We have supported GPT-4 [https://openai.com/gpt-4]! Go to our leaderboard [https://opencompass.org.cn/leaderboard-llm] for more results! More models are welcome to join OpenCompass.


	[2023.07.27] We have supported CMMLU [https://github.com/haonan-li/CMMLU]! More datasets are welcome to join OpenCompass.
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